Research (Wash D C)
November 2021
Recently, triboelectric nanogenerators (TENGs) have been promoted as an effective technique for ambient energy harvesting, given their large power density and high energy conversion efficiency. However, traditional TENGs based on the combination of triboelectrification effect and electrostatic induction have proven susceptible to environmental influence, which intensively restricts their application range. Herein, a new coupling mechanism based on electrostatic induction and ion conduction is proposed to construct flexible stable output performance TENGs (SOP-TENGs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
As emerging ambient energy harvesting technology, triboelectric nanogenerators (TENGs) have proven to be a robust power source and have demonstrated the unique ability to power micro-nano electronics autonomously to form self-powered devices. Although four working modes of TENGs have been developed to promote the feasibility of self-powered micro-nano systems, the relatively complicated structure composed of multilayer and movable components limits the practical applications of TENGs. Herein, we propose a single-layer triboelectric nanogenerator (SL-TENG) based on ion-doped natural nanofibrils.
View Article and Find Full Text PDF