Nanoplastics (NPs) exposure could disrupt the synthesis of steroid hormones, thereby posing a potential threat to male reproductive health. However, the existing comprehension of the molecular mechanisms participating in this process remains limited, and the reversibility of NPs-triggered male reproductive toxicity is poorly understood. This investigation focused on the impact of histone modification on testosterone production in mice under long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs).
View Article and Find Full Text PDFNanoplastics (NPs) can penetrate the intestinal barrier of organisms and accumulate in the liver, thereby inducing hepatocyte apoptosis. However, the underlying mechanisms remain incompletely elucidated. This study examined the effects of PS-NPs exposure on hepatocyte apoptosis and revealed the role of cell cycle arrest and mitophagy.
View Article and Find Full Text PDFAs emerging environmental contaminants, nanoplastics (NPs) are progressively accumulating in terrestrial and aquatic ecosystems worldwide, posing a potential threat to human health. The liver is considered as one of the primary organs targeted by NPs accumulation in living organisms. However, there remains a large knowledge gap concerning NPs-induced hepatotoxicity.
View Article and Find Full Text PDFNanoplastics (NPs) continue to accumulate in global aquatic and terrestrial systems, posing a potential threat to human health through the food chain and/or other pathways. Both in vivo and in vitro studies have confirmed that the liver is one of the main organs targeted for the accumulation of NPs in living organisms. However, whether exposure to NPs induces size-dependent disorders of liver lipid metabolism remains controversial, and the reversibility of NPs-induced hepatotoxicity is largely unknown.
View Article and Find Full Text PDFHaloacetic acids (HAAs) are ubiquitous in drinking water and have been associated with impaired male reproductive health. However, epidemiological evidence exploring the associations between HAA exposure and reproductive hormones among males is scarce. In the current study, the urinary concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the internal exposure markers of HAAs, as well as sex hormones (testosterone [T], progesterone [P], and estradiol [E]) were measured among 449 Chinese men.
View Article and Find Full Text PDFEnvironmental arsenic (As) exposure has been associated with gestational diabetes mellitus (GDM) risk. Our recent study found that GDM was positively associated with urinary As level while negatively correlated to As. However, the mechanisms underlying the association between arsenic species and GDM remain largely unknown.
View Article and Find Full Text PDFAutophagy was involved in vascular endothelial injury caused by PM, which aggravated the pathogenesis of cardiovascular diseases. However, major toxic components and underlying mechanism responsible for PM-induced autophagy remain unclear. In this study, the effects of water-extracted PM (WE-PM) on autophagy in human umbilical vein endothelial cells (HUVEC) were studied.
View Article and Find Full Text PDFUbiquitous micro(nano)plastics (MNPs) are emerging environmental pollutants, which pose a potential threat to human health. When MNPs enter the blood circulatory system, vascular endothelium is one of the most important target organs that directly interact with the MNPs. However, little is known about the cytotoxicity of MNPs to vascular endothelial cells.
View Article and Find Full Text PDFUbiquitous nanoplastics (NPs) increase exposure risks to humans through the food chain and/or other ways. However, huge knowledge gaps exist regarding the fate and adverse impact of NPs on the human cardiovascular system. Autophagy is an important catabolic pathway that disposes of cytoplasmic waste through the lysosomes.
View Article and Find Full Text PDFAn air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins.
View Article and Find Full Text PDF