Publications by authors named "Yan-Tuan Li"

Article Synopsis
  • An innovative strategy uses cocrystallization and nanotechnology to enhance the effectiveness of the marine antitumor drug cytarabine (ARA) by combining it with uracil (U) and 5-fluorouracil (FU) into a new cocrystal alloy (ARA-FU-U) and converting it into a nanocrystal.
  • The cocrystal alloy benefits from a unique hydrogen-bonding system that stabilizes ARA, while both the alloy and nanocrystal forms improve the drug's physical properties and drug absorption for better pharmacokinetics.
  • The synergistic antitumor effect of ARA and FU is significantly increased in the cocrystal alloy, suggesting that U helps maintain
View Article and Find Full Text PDF

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties.

View Article and Find Full Text PDF

To emphasize the superiority of uracil (UR) in ameliorating biopharmaceutical characteristics of marine antitumor medicine cytarabine (ARA), thus gaining some innovative opinions for the exploitation of nanococrystal formulation, a cocrystal nanonization strategy is proposed by integrating cocrystallization and nanosize preparation techniques. For one thing, based on UR's unique structural features and natures together with advantages of preferential uptake by tumor cells, cocrystallizing ARA with UR is expected to improve the in vitro/vivo performances. For another, the nanonization procedure is oriented towards maintaining the long-term effective drug level.

View Article and Find Full Text PDF

Correction for 'Supramolecular self-assembly of amantadine hydrochloride with ferulic acid dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical cocrystal' by Ling-Yang Wang , , 2021, , 3988-3999, https://doi.org/10.1039/D1AN00478F.

View Article and Find Full Text PDF

The current research leverages the structural features and property superiorities along with benefits in protecting cardiovascular system of gallic acid (GLC) and gentisic acid (HGA) to optimize / peculiarities of cardiotonic drug milrinone (MIL) through developing a stratagem of cocrystallization-driven double-optimized ternary salt cocrystal. This strategy assembles MIL ternary salt cocrystal by shaping a cocrystallization moiety relying on noncovalent interplays with GLC to obtain permeability advancement and molding a salt segment via the salification of proton transfer between HGA and MIL molecules to facilitate solubility enhancement. While the ameliorative properties further modulate the pharmacokinetic behaviors, thus fulfilling a dual optimization of MIL's biopharmaceutical characteristics on both and aspects.

View Article and Find Full Text PDF
Article Synopsis
  • Esculetin (ELT) is a well-known coumarin with strong antioxidant properties but has low solubility and absorption issues.
  • To enhance its solubility, researchers created a cocrystal of ELT using nicotinamide (NAM), which has good water solubility and can boost ELT's antioxidant effects.
  • The study found that this cocrystal significantly improved ELT's solubility and bioavailability, also showing enhanced antioxidant activity and potential liver protection in rat experiments.
View Article and Find Full Text PDF

To explore how to transform cocrystals of the anticancer drug 5-fluorouracil (FL) with caffeic acid (CF; FL-CF-2HO) into a nanoformulation, a self-assembly strategy of cocrystal-loaded micelles is proposed. Nanomicelles were assembled to deliver cocrystal FL-CF-2HO with synergistic activity, and their / properties were evaluated by combining theoretical and experimental methods. More cocrystal was packed into the polymers due to the stronger interaction energy during micellar assembly, producing excellent cytotoxicity and pharmacokinetic behavior, especially synergistic abilities and long-term therapy.

View Article and Find Full Text PDF

In order to highlight the advantages of cocrystallization technique in perfecting in vitro/vivo natures of marine drug cytarabine (ARC), and fill the gap of the research of marine pharmaceutical cocrystals with synergistic antitumor effects, the first dual-drug cocrystal simultaneously containing ARC and antitumor drug 5-fluorouracil (FU), viz. ARC-FU, is successfully designed and assembled. The accurate structure is perfectly resolved by single-crystal X-ray diffraction and other approaches.

View Article and Find Full Text PDF

To fully play the advantages of cocrystallization and nano-preparation techniques in regulating in vitro/vivo biopharmaceutical properties of anticancer drug 5-fluorouracil (FU), and further exploit new avenues in its formulation development, a recombination strategy of cocrystallization and nano-micellar self-assembly techniques is proposed. Thereinto, the cocrystallization technique is aiming at augmenting antitumor ability by ameliorating physicochemical performances of FU, while the nano-micellar self-assembly technique is mainly employed to achieve slowed release and long-term efficacy. Guided by this strategy, a new zwitterionic cocrystal of FU with L-proline (PL), FU-PL, is successfully synthesized, and then incorporated into carriers PEG-PCL to gain cocrystal micelles.

View Article and Find Full Text PDF

In order to exploit the advantages to the full of multidrug salification strategy in amending the pharmaceutical properties of drugs both in vitro and in vivo, and further to open up a new way for its applications in bacteria-virus mixed cross-infection drugs, a novel dual-drug crystalline molecular salt hybridizing antibacterial drug sulfamethoxazole (SFM) with antiviral ingredient amantadine (ATE), namely SFM-ATE, is successfully designed and synthesized via multidrug salification strategy oriented by proton exchange reaction. The crystal structure of the firstly obtained molecular salt is precisely identified by employing single-crystal X-ray diffraction and multiple other techniques. The results show that, in the crystal lattice of molecular salt SFM-ATE, the classical hydrogen bonds together with charge-assisted hydrogen bonds contribute to two- dimensional networks, between which the hydrophobic interaction plays an important role.

View Article and Find Full Text PDF

To display the capability of the phenolic acid nutraceutical ferulic acid (FLA) in optimizing the in vitro/in vivo properties of the antiviral drug amantadine hydrochloride (AMH) and achieve synergistically enhanced antiviral effects, thereby gaining some new insights into pharmaceutical cocrystals of antiviral drugs with phenolic acid nutraceuticals, a cocrystallization strategy of dual optimization was created. Based on this strategy, the first drug-phenolic acid nutraceutical cocrystal of AMH with FLA, namely AMH-FLA-H2O, was successfully assembled and completely characterized by employing single-crystal X-ray diffraction and other analytical techniques. The cocrystal was revealed to be composed of AMH, FLA, and water molecules in the ratio of 3 : 1 : 1.

View Article and Find Full Text PDF

For highlighting the predominance of phenolic acid nutraceutical ferulic acid (FR) in regulating the in vivo/vitro performances of anticancer drug 5-fluorouracil (Flu) and strengthening their cooperativity in antitumor effect, thus achieving a major breakthrough in the development of drug-nutraceutical cocrystal with synergistic antitumor action, a cocrystallization strategy of dual optimization is created, in which both the in vivo and vitro natures of Flu are improved by exploiting the FR's excellent physicochemical property. Moreover, Flu's anticancer effects were promoted by exerting the assistant antitumor peculiarity of FR. Such dual optimization of FR for Flu in physicochemical properties and anticancer activities is beneficial for realizing synergistic augmentation effect by taking the benefit of the cooperativeness of Flu and FR in the anticancer ability.

View Article and Find Full Text PDF

With the aim of surmounting the severe hepatotoxicity induced by antituberculosis drug isoniazid (INH), a novel cocrystal of INH with hepatoprotective nutraceutical syringic acid (SYA), namely INH-SYA, was designed and prepared through cocrystallization strategy, which is an intriguing attempt to reduce the toxic side effects of INH. The study not only provides new thinking for inhibiting toxic side effects of drugs through cocrystallization strategy, but also opens a new pathway for the application of nutraceuticals in the pharmacy. INH and SYA were successfully crystallized into the same crystal lattice through combining volatilization with solvent assisted methods.

View Article and Find Full Text PDF

With the purpose of overcoming the serious hepatotoxicity of antituberculosis drug isoniazid (INH), a cocrystallization strategy based on complementary advantages was implemented by choosing the hepatoprotective nutraceutical quercetin (QCT) as the cocrystal former. The strategy plays the solubility advantage of INH to improve the bioavailability of the insoluble QCT, thereby significantly enhancing the QCT's hepatoprotective effects. The optimized protective effects of QCT, in turn, feed back to INH to reduce its hepatotoxicity.

View Article and Find Full Text PDF

A new tetracopper(II) complex bridged both by oxamido and carboxylato groups, namely [Cu (dmaepox) (bpy) ](NO ) ·2H O, where H dmaepox and bpy represent N-benzoato-N'- (3-methylaminopropyl)oxamide and 2,2'-bipyridine, was synthesized, and its structure reveals the presence of a centrosymmetric cyclic tetracopper(II) cation assembled by a pair of cis-dmaepox - bridged dicopper(II) units through the carboxylato groups, in which the endo- and exo-copper(II) ions bridged by the oxamido group have a square-planar and a square-pyramidal coordination geometries, respectively. The aromatic packing interactions assemble the complex molecules to a two-dimensional supramolecular structure. The reactivity toward DNA and protein bovine serum albumin (BSA) indicates that the complex can interact with herring sperm DNA through the intercalation mode and the binding affinity is dominated by the hydrophobicity and chelate ring arrangement around copper(II) ions and quenches the intrinsic fluorescence of BSA via a static process.

View Article and Find Full Text PDF

A new trinickel(II) complex bridged by N-[3-(dimethylamino)propyl]- N'-(2-hydroxylphenyl)oxamido (H pdmapo), namely [Ni (pdmapo) (H O) ]⋅4CH OH, was synthesized and characterized by X-ray single-crystal diffraction and other methods. In the molecule, two symmetric cis-pdmapo mononickel(II) complexes as a "complex ligand" using the carbonyl oxygen atoms coordinate to the center nickel(II) ion situated on an inversion point. The Ni···Ni distance through the oxamido bridge is 5.

View Article and Find Full Text PDF

Two new tetracopper(II) complexes bridged by N-benzoate-N'-[3-(diethylamino)propyl]oxamide (H3bdpox), and ended with 4,4'-dimethyl-2,2'-bipyridine (Me2bpy) or 2,2'-bipyridine (bpy), namely [Cu4(bdpox)2(Me2bpy)2](pic)2 (1) and [Cu4(bdpox)2(bpy)2](pic)2·2H2O (2) (where pic denotes the picrate anion) have been synthesized and characterized by X-ray single-crystal diffraction and other methods. In both complexes, four copper(II) ions are bridged alternately by the cis-oxamido and the carboxylato groups of two bdpox(3-) ligands to form a centrosymmetric cyclic tetranuclear cation, in which, the copper(II) ions at the endo- and exo-sites of cis-bdpox(3-) ligand have square-planar and square-pyramidal coordination geometries, respectively. The reactivity towards DNA/BSA suggests that these complexes can interact with HS-DNA through the intercalation mode and the binding affinity varies as 1>2 depending on the hydrophobicity, and effectively quench the fluorescence of protein BSA via a static mechanism.

View Article and Find Full Text PDF

Two new μ-oxamido-bridged dicopper(II) complexes formulated as [Cu2(hmdoxd)(H2O)(Me2bpy)]-(ClO4)·DMF (1) and [Cu2(hmdoxd)(bpy)](ClO4)·CH3OH (2), where H3hmdoxd is N-(2-hydroxy-5-methylphenyl)-N'-[2-(dimethylamino)ethyl]oxamide; Me2bpy and bpy stand for 4,4'-dimethyl-2,2'-bipyridine and 2,2'-bipyridine, respectively, were synthesized and structurally characterized. The single-crystal X-ray diffraction analysis reveals that the copper(II) ions in complexes 1 and 2 are bridged by the cis-hmdoxd(3-) with corresponding Cu⋯Cu separations of 5.1596(6) and 5.

View Article and Find Full Text PDF

A new oxamido-bridged dicopper(II) complex with formula of [Cu2(deap)(pic)2], where H2deap and pic represent N,N'-bis[3-(diethylamino)propyl]oxamide and picrate, respectively, was synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral study, and single-crystal X-ray diffraction. The crystal structure analyses revealed that the two copper(II) atoms in the dicopper(II) complex are bridged by the trans-deap(2-) ligand with the distances of 5.2116(17)Å, and the coordination environment around the copper(II) atoms can be described as a square-planar geometry.

View Article and Find Full Text PDF

Two new dicopper(II) complexes bridged by N-(2-hydroxy-5-methylphenyl)-N'-[3-(dimethyl-amino)propyl]oxamide (H3hmpoxd), and end-capped with 4,4'-dimethyl-2,2'-bipyridine (Me2bpy) and 2,2'-bipyridine (bpy), were synthesized and structurally characterized, namely [Cu2(hmpoxd)(CH3OH)(Me2bpy)](ClO4) (1) and [Cu2(hmpoxd)(bpy)](ClO4)∙CH3OH (2). The single-crystal X-ray diffraction analysis reveals that the endo- and exo-copper (II) ions bridged by the cis-hmpoxd(3-) ligand are located in square-planar and square-pyramidal geometries, respectively, for 1, and square-planar environments in 2. The DNA/protein-binding natures are studied theoretically and experimentally, indicating that both the two complexes can interact with the DNA in the mode of intercalation, and effectively quench the intrinsic fluorescence of protein BSA via the favored binding sites Trp213 for 1 and Trp134 for 2.

View Article and Find Full Text PDF

The title compound, [Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O, consists of a cis-oxamide-bridged binuclear Cu(II) complex cation, a perchlorate anion and half a solvent water mol-ecule. One Cu(II) cation is N,N',N",O-chelated by an N-[3-(di-methyl-amino)-prop-yl]-N'-(2-hy-droxy-phen-yl)oxamide trianion in a distorted square-planar geometry, whereas the other Cu(II) cation is O,O'-chelated by the oxamide moiety of the anion and N,N'-chelated by a 1,10-phenanthroline-5,6-dione mol-ecule, and a water mol-ecule further coordinates the second Cu(II) cation, completing a distorted square-pyramidal coordination geometry.

View Article and Find Full Text PDF

Two new dicopper(II) complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands: N-(5-chloro-2-hydroxyphenyl)-N'-[2-(dimethylamino)ethyl]oxamide (H3chdoxd) and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide (H3oxbpa), and end-capped with 2,2'-bipyridine (bpy), namely [Cu2(ClO4)(chdoxd)(CH3OH)(bpy)]·H2O (1) and [Cu2(pic)(oxbpa)(CH3OH)(bpy)]·0.5CH3OH (2) (pic denotes picrate anion), have been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-oxamido ligands in dicopper(II) complexes 1 and 2 are all in square-pyramidal environments with the corresponding Cu⋯Cu separations of 5.

View Article and Find Full Text PDF

A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.

View Article and Find Full Text PDF

Three new dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methylamino)-propyl]oxamide (H3chmpoxd) and end-capped with 1,10-phenanthroline (phen); 2,2'-diamino-4,4'-bithiazole (dabt); and 2,2'-bipyridine (bpy), namely [Cu2(chmpoxd)(H2O)(phen)](ClO4)⋅CH3CN (1), [Cu2(chmpoxd)(dabt)(C2H5OH)](NO3) (2) and [Cu2(chmpoxd)(H2O)(bpy)](NO3)⋅CH3CN (3), were synthesized and structurally characterized. The single-crystal X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-chmpoxd(3-) ligands in the three complexes are in square-planar and square-pyramidal environments, respectively. The reactivity towards herring sperm DNA (HS-DNA) and protein bovine serum albumin (BSA) indicated that these copper(II) complexes can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism.

View Article and Find Full Text PDF

Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds.

View Article and Find Full Text PDF