Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs.
View Article and Find Full Text PDFAutophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT).
View Article and Find Full Text PDFA purely laparoscopic four-port approach was created for left hepatectomy in pigs. A polyethylene loop was placed on the left two hepatic lobes for traction and lift. Next, penetrating ligation of the lobes using of a double row of silk sutures was performed to control bleeding.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are usually generated by reprogramming somatic cells through transduction with a transcription factor cocktail. However, the low efficiency of this procedure has kept iPSCs away from the study of the clinical application of stem cell biology. Our research shows that continuous passage increases the efficiency of reprogramming.
View Article and Find Full Text PDFPig pluripotent cells may represent an advantageous experimental tool for developing therapeutic application in the human biomedical field. However, it has previously been proven to be difficult to establish from the early embryo and its pluripotency has not been distinctly documented. In recent years, induced pluripotent stem (iPS) cell technology provides a new method of reprogramming somatic cells to pluripotent state.
View Article and Find Full Text PDFParthenogenetic embryonic stem cells (PgES) might advance cell replacement therapies and provide a valuable in vitro model system to study the genomic imprinting. However, the differential potential of PgES cells was limited. It could result from relative low heterology of PgES cells compared with ES cells from fertilization (fES), which produce different expression of most imprinted genes.
View Article and Find Full Text PDFIn this study, we generated embryonic stem cells from parthenogenetic embryos (PESCs), and induced them to differentiate to motor neurons, which could be an alternative source of histocompatible cells for replacement of therapy and theoretical foundation for studying the relationship of genome imprint and neural differentiation. The parthenogenetic activation rate of B6D2F1 mouse oocytes was 93.26%.
View Article and Find Full Text PDFDevelopmental signaling molecules involved in dorsal patterning of the spinal cord have been identified in vivo; however, studies have not produced specific functional dorsal spinal cord neurons in vitro. We present here differentiation of R1 embryonic stem (ES) cells into GABAergic dorsal spinal cord neurons by sequential treatment with developmental signaling molecules. We found that retinoic acid, Bmp4 altered the specification of neural progenitors and instructed neural fate when applied at distinct stages of development.
View Article and Find Full Text PDF