Publications by authors named "Yan-Ru Lou"

Aging is an important contributing factor for β-cell failure which could lead to the development of type 2 diabetes (T2D). Aging β-cell exhibits signs of senescence and develops senescence-associated secretory phenotype (SASP), causing the senescence and dysfunction of neighboring cells through paracrine action. is recognized as an anti-aging gene, and the corresponding protein is α-Klotho (KL).

View Article and Find Full Text PDF

Background And Objectives: Efsubaglutide alfa is a novel long-acting human glucagon-like peptide-1 receptor agonist. Clinical studies in patients with type 2 diabetes (T2D) have shown excellent glucose-lowering effects. This study aims to develop a population pharmacokinetic (popPK) model for efsubaglutide alfa to characterize its pharmacokinetic (PK) profile and assess the impact of intrinsic and extrinsic factors.

View Article and Find Full Text PDF

Background: Glucagon-like peptide 1 (GLP-1) is an incretin hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic agent. We demonstrated previously that supaglutide, a novel long-acting GLP-1 analog, exerted hypoglycemic, hypolipidemic, and weight loss effects in type 2 diabetic db/db mice, DIO mice, and diabetic monkeys.

View Article and Find Full Text PDF

Background: One of the primary reasons for tumor invasion and metastasis is anoikis resistance. Biochemical recurrence (BCR) of prostate cancer (PCa) serves as a harbinger of its distant metastasis. However, the role of anoikis in PCa biochemical recurrence has not been fully elucidated.

View Article and Find Full Text PDF

Resistance to androgen receptor (AR) inhibitors, including enzalutamide (Enz), as well as bone metastasis, are major challenges for castration-resistant prostate cancer (CRPC) treatment. In this study, we identified that miR26a can restore Enz sensitivity and inhibit bone metastatic CRPC. To achieve the highest combination effect of miR26a and Enz, we developed a cancer-targeted nano-system (Bm@PT/Enz-miR26a) using bone marrow mesenchymal stem cell (BMSC) membrane and T140 peptide to co-deliver Enz and miR26a.

View Article and Find Full Text PDF

Islet regeneration is a complex process involving multiple metabolic adaptions, but the specific characterization of the islet metabolome in relation to cell proliferation has not been established. This study aimed to investigate the metabolomic changes of regenerative islets from partial pancreatectomy (Ppx) mice and speculate underlying mechanisms. Islet samples were collected from C57/BL6 mice undergoing 70-80% Ppx or sham surgery, followed by analyses of glucose homeostasis, islet morphology, and untargeted metabolomics profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Modulation of lipid metabolism during cancer development and progression is one of the hallmarks of cancer in solid tumors; its importance in prostate cancer (PCa) has been demonstrated in numerous studies. Lipid metabolism is known to interact with androgen receptor signaling, an established driver of PCa progression and castration resistance. Similarly, immune cell infiltration into prostate tissue has been linked with the development and progression of PCa as well as with disturbances in lipid metabolism.

View Article and Find Full Text PDF

We recently demonstrated that combined therapy of GABA and sitagliptin promoted beta-cell proliferation, and decreased beta-cell apoptosis in a multiple low-dose streptozotocin (STZ)-induced beta-cell injury mouse model. In this study, we examined whether this combined therapy is effective in ameliorating the impairment of beta-cell function caused by high-fat diet (HFD) feeding in mice. Male C57BL/6J mice were fed normal chow diet, HFD, or HFD combined with GABA, sitagliptin, or both drugs.

View Article and Find Full Text PDF

The current organoid culture systems allow pluripotent and adult stem cells to self-organize to form three-dimensional (3D) structures that provide a faithful recapitulation of the architecture and function of organs. In particular, human pluripotent stem cell-derived liver organoids (PSC-LOs) can be used in regenerative medicine and preclinical applications, such as disease modeling and drug discovery. New bioengineering tools, such as microfluidics, biomaterial scaffolds, and 3D bioprinting, are combined with organoid technologies to increase the efficiency of hepatic differentiation and enhance the functional maturity of human PSC-LOs by precise control of cellular microenvironment.

View Article and Find Full Text PDF

The generation of human stem cell-derived spheroids and organoids represents a major step in solving numerous medical, pharmacological, and biological challenges. Due to the advantages of three-dimensional (3D) cell culture systems and the diverse applications of human pluripotent stem cell (iPSC)-derived definitive endoderm (DE), we studied the influence of spheroid size and 3D cell culture systems on spheroid morphology and the effectiveness of DE differentiation as assessed by quantitative PCR (qPCR), flow cytometry, immunofluorescence, and computational modeling. Among the tested hydrogel-based 3D systems, we found that basement membrane extract (BME) hydrogel could not retain spheroid morphology due to dominant cell-matrix interactions.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver maturation takes place.

View Article and Find Full Text PDF

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells, can significantly enhance drug discovery and development processes.
  • The review highlights the various stages where hPSC-derived in vitro models are utilized, such as drug screening, toxicology evaluation, and precision medicine.
  • Advances in biotechnology and developmental biology could lead to more cost-effective and successful drug development outcomes through these models.
View Article and Find Full Text PDF

The risk of drug-induced liver injury (DILI) poses a major challenge for development of natural products derived from traditional Chinese medicines (NP-TCMs). It is urgent to find a new method for the safety assessment of the NP-TCMs. Recent study has reported an in vitro/in silico method to estimate the acceptable daily intake of hepatotoxic compounds using support vector machine (SVM) classifier and physiologically based pharmacokinetic (PBPK) modeling.

View Article and Find Full Text PDF

3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84).

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses advancements in CRISPR/Cas9 genome editing methods for human pluripotent stem cells, focusing on a new transfection protocol using Cas9 mRNA and crRNA:tracrRNA duplexes.
  • The improved protocol achieves high targeting efficiency of up to 85% and biallelic targeting efficiency of 76.5% across various human PS cell lines.
  • The findings highlight the potential for broader applications in CRISPR screening and in the development of tailored cell products for medical therapies.
View Article and Find Full Text PDF

Transmembrane protein integrins play a key role in cell adhesion. Cell-biomaterial interactions are affected by integrin expression and conformation, which are actively controlled by cells. Although integrin structure and function have been studied in detail, quantitative analyses of integrin-mediated cell-biomaterial interactions are still scarce.

View Article and Find Full Text PDF

In vitro cell culture or tissue models that mimic in vivo cellular response have potential in tissue engineering and regenerative medicine, and are a more economical and accurate option for drug toxicity tests than animal experimentation. The design of in vivo-like cell culture models should take into account how the cells interact with the surrounding materials and how these interactions affect the cell behavior. Cell-material interactions are furthermore important in cancer metastasis and tumor progression, so deeper understanding of them can support the development of new cancer treatments.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have been studying various biomaterials for biomedical applications, aiming to mimic natural biological systems.
  • Despite thorough investigations, there is a lack of quantitative knowledge regarding molecular interactions between different biomaterials, which is essential for both understanding biological properties and developing new composite materials.
  • This study specifically analyzes the adhesion properties among collagen I, collagen IV, laminin, and cellulose nanofibrils using atomic force microscopy, revealing that adhesion increases with contact time, with strong interactions observed between Col IV films and Col IV-LN-521 combinations.
View Article and Find Full Text PDF

Herbal medicines have been increasingly used in the last three decades. Despite their popularity, safety issues with herbal products need to be addressed. We performed a feasibility study of the toxic responses of human induced pluripotent stem cell-derived hepatocytes (iHep cells) to phytochemicals in comparison with hepatoblasoma-derived HepG2 cells and long-term human hepatocytes (LTHHs).

View Article and Find Full Text PDF

Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlo2ha64kbkg96n7421pvki5rrl0qmf7c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once