Purpose: Sepsis is characterized by an acute inflammatory response to infection, often with multiple organ failures, especially severe lung injury. This study was implemented to probe circular RNA (circRNA) protein tyrosine kinase 2 (circPTK2)-associated regulatory mechanisms in septic acute lung injury (ALI).
Methods: A cecal ligation and puncture-based mouse model and an lipopolysaccharides (LPS)-based alveolar type II cell (RLE-6TN) model were generated to mimic sepsis.
The development of intelligent and precise cancer therapy systems that enable accurate diagnosis and specific elimination of cancer cells while protecting normal cells to improve the safety and effectiveness of the treatment is still a challenge. Herein, we report a novel activatable nanodevice for precise cancer therapy. The nanodevice is constructed by adsorbing a DNA duplex probe onto MnO2 nanosheets.
View Article and Find Full Text PDFMultiple drug resistance is a persistent obstacle for efficient chemotherapy of cancer. Herein, we report a novel drug delivery platform. A zeolitic imidazole framework-8 (ZIF-8) film with a few nanometer thickness was in situ synthesized on the surface of carboxylated mesoporous silica (MSN-COOH) nanoparticles (NPs) for pore blocking and efficient loading of small interfering RNAs to fabricate a pH-responsive drug delivery system.
View Article and Find Full Text PDFA novel biosensor for sensitively detecting potassium ion (K) has been developed based on fluorescent copper nanoparticles (Cu NPs). In our design, we employ a label-free single-strand DNA (ssDNA) that contains two parts. One is 3'-terminus structure-switching aptamers (SSAs) that can fold into G-quadruplex after binding with its target K.
View Article and Find Full Text PDFCytochrome c (Cyt c) and caspase-3 are the key mediators in apoptotic signaling. As is known to all, the release of Cyt c from mitochondria is a vital caspase activation pathway and defines the point of no-return in cell apoptosis. However, it has not been reported that any fluorescence imaging tools could allow simultaneous visualization of Cyt c translocation and caspase-3 activation in apoptotic cells.
View Article and Find Full Text PDFLong microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly.
View Article and Find Full Text PDFHigh efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given 'Y' shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time.
View Article and Find Full Text PDF