Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally.
View Article and Find Full Text PDFThe aim of the present study was to investigate the sonication effects of 21-kHz ultrasound (US) with microbubbles (MBs) on the subcutaneous prostate tumors of nude mice. In total, 15 tumor-bearing nude mice were divided into three groups: The control group, the low-frequency US group and the US+MB group. The MBs used were from US contrast agent SonoVue.
View Article and Find Full Text PDFIntroduction: Our objective is to assess the effects of low-frequency ultrasound combined with microbubbles on benign prostate hyperplasia (BPH).
Methods: Sixteen Beagle dogs with BPH were randomly assigned into 4 groups (n = 4): control group (without treatment), G1 group (injection with 2 mL of microbubble contrast agent); G2 group (21 kHz ultrasound); and G3 group (injection with 2 mL of micro-bubble contrast agent +21 kHz ultrasound). The histopathological damage to prostate cells was assessed via transmission electron microscopy and optical microscopy.
It has been shown that 1 and 3 MHz low-intensity ultrasound was able to affect the fragile and leaky angiogenic blood vessels in a tumor. However, the biological effects of 21 kHz low-intensity ultrasound on tumors remain unclear. The aim of the present study was to explore the effects of 21 kHz ultrasound with microbubbles on the regulation of vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and apoptosis in subcutaneous prostate tumors in nude mice.
View Article and Find Full Text PDF