In this study, the carboxy silane 4-(triethoxysilyl)butanoic acid (TESBA) was used to modify titanium dioxide (TiO) to create a self-assembled monolayer (SAM) and then directionally immobilize a capture antibody using protein A. We selected the amino silane (3-aminopropyl)triethoxysilane (APTES) to perform a comparative analysis with TESBA, and employed glutaraldehyde (GA) as the control. The modification and detection effects and the limit of detection (LOD) were evaluated by detecting human immunoglobulin G (IgG).
View Article and Find Full Text PDFThis study uses negative dielectrophoresis and AC electroosmosis as a driving mechanism and presents an electrically driven microconcentrator that concentrates the sample in the region exterior to the electrodes (termed as exterior-electrode electrically driven microconcentrator in this paper). The proposed microconcentrator uses a 3-D face-to-face electrode pair; the top electrode is a relatively large planar electrode, and the bottom electrode is formed with three to six long and thin electrodes connected into an open ring. The sample is brought to the vicinity of the open electrode at the bottom by electroosmotic flow; then, negative dielectrophoresis is used to push the sample away from the electrode and concentrate it in the region surrounded by the open ring electrode.
View Article and Find Full Text PDF