Publications by authors named "Yan-Bo Fang"

Article Synopsis
  • The accumulation of cadmium (Cd) in rice is a health risk, but using foliar zinc (Zn) fertilizer can reduce Cd levels in grains grown in contaminated soils.
  • High levels of applied Zn can enhance the transport of Cd to the grains by affecting its movement in the plant, due to reduced retention of Cd in leaf cells and increased desorption from leaf walls.
  • Researchers found that while Zn helps with Cd allocation in rice, using it in areas with high atmospheric Cd could lead to unintended grain contamination, so caution is recommended.
View Article and Find Full Text PDF

A clear understanding of the allocation of Cd to grains is essential to manage the level of Cd in cereal diets effectively. Yet, debate remains over whether and how the pre-anthesis pools contribute to grain Cd accumulation, resulting in uncertainty regarding the need to control plant Cd uptake during vegetative growth. To this end, rice seedlings were exposed to Cd labeled solution until tillering, transplanted to unlabeled soils, and grown under open-air conditions.

View Article and Find Full Text PDF

Manure and sewage sludge are known to add significant amounts of zinc (Zn) and other metals to soils. However, there is a paucity of information on the fate of Zn that derives from complex organic fertilizers in soil-plant systems and the contribution of these fertilizers to the Zn nutrition of crops. To answer these questions, we grew Italian ryegrass in the presence of ZnSO, sewage sludge, and cattle and poultry manure in an acidic soil from Heitenried, Switzerland, and an alkaline soil from Strickhof, Switzerland, where the isotopically exchangeable Zn had been labeled with Zn.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. MicroRNA-29b (miR-29b) plays a broad and critical role in brain homeostasis. In this study, we tested the function of miR-29b in animal and cell models by inhibiting miR-29b expression.

View Article and Find Full Text PDF

Background: High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C.

View Article and Find Full Text PDF

Background: The decline of photosynthesis in plants under low sink demand is well known. Previous studies focused on the relationship between stomatal conductance (gs) and net photosynthetic rate (Pn). These studies investigated the effect of changes in Photosystem II (PSII) function on the Pn decline under low sink demand.

View Article and Find Full Text PDF