Overexpression of JcSEUSS1 resulted in late flowering, reduced flower number, wrinkled kernels, and decreased seed yield in Jatopha curcas, while downregulation of JcSEUSS1 increased flower number and seed production. The seed oil of Jatropha curcas is suitable as an ideal alternative for diesel fuel, yet the seed yield of Jatropha is restricted by its small number of female flowers and low seed setting rate. Therefore, it is crucial to identify genes that regulate flowering and seed set, and hence improve seed yield.
View Article and Find Full Text PDFDiacylglycerol acyltransferase (DGAT) is the only enzyme that catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol (DAG) to form triacylglycerol (TAG). The two main types of DGAT enzymes in the woody perennial biofuel plant , JcDGAT1 and JcDGAT2, were previously characterized only in heterologous systems. In this study, we investigated the functions of and in and were found to be predominantly expressed during the late stages of seed development, in which large amounts of oil accumulated.
View Article and Find Full Text PDFBackground: L., a perennial oilseed plant, is considered as a promising feedstock for biodiesel production. Genetic modification of flowering characteristics is critical for breeding.
View Article and Find Full Text PDFBackground: Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported.
Results: Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.
L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in flowers through transgenic expression of a cytokinin biosynthetic gene () from Arabidopsis under the control of a orthologue of () promoter that is predominantly active in flowers.
View Article and Find Full Text PDFBackground: In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L.
View Article and Find Full Text PDFFront Plant Sci
December 2017
Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a gene, designated , was isolated from .
View Article and Find Full Text PDFPlukenetia volubilis is a promising oilseed crop due to its seeds being rich in unsaturated fatty acids, especially alpha-linolenic acid. P. volubilis is monoecious, with separate male and female flowers on the same inflorescence.
View Article and Find Full Text PDFCytokinin (CK) is the primary hormone that positively regulates axillary bud outgrowth. However, in many woody plants, such as Jatropha curcas, gibberellin (GA) also promotes shoot branching. The molecular mechanisms underlying GA and CK interaction in the regulation of bud outgrowth in Jatropha remain unclear.
View Article and Find Full Text PDFMost germplasms of the biofuel plant are monoecious. A gynoecious genotype of was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed.
View Article and Find Full Text PDFJatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha.
View Article and Find Full Text PDFJatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants.
View Article and Find Full Text PDFThe 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development.
View Article and Find Full Text PDFis considered a potential biodiesel feedstock crop. Currently, the value of is limited because its seed yield is generally low. Transgenic modification is a promising approach to improve the seed yield of Although -mediated genetic transformation of has been pursued for several years, the transformation efficiency remains unsatisfying.
View Article and Find Full Text PDFReal-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds.
View Article and Find Full Text PDFThe JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed.
View Article and Find Full Text PDFMOTHER OF FT AND TFL1 (MFT)-like genes belong to the phosphatidylethanoamine-binding protein (PEBP) gene family in plants. In contrast to their homologs FLOWERING LOCUS T (FT)-like and TERMINAL FLOWER 1 (TFL1)-like genes, which are involved in the regulation of the flowering time pathway, MFT-like genes function mainly during seed development and germination. In this study, a full-length cDNA of the MFT-like gene JcMFT1 from the biodiesel plant Jatropha curcas (L.
View Article and Find Full Text PDF