Publications by authors named "Yan Ru Chen"

The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.

View Article and Find Full Text PDF

In this study, we developed an optofluidic chip consisting of a guided-mode resonance (GMR) sensor incorporated into a microfluidic chip to achieve simultaneous blood plasma separation and label-free albumin detection. A sedimentation chamber is integrated into the microfluidic chip to achieve plasma separation through differences in density. After a blood sample is loaded into the optofluidic chip in two stages with controlled flow rates, the blood cells are kept in the sedimentation chamber, enabling only the plasma to reach the GMR sensor for albumin detection.

View Article and Find Full Text PDF

Species-specific long non-coding RNAs (lncRNAs) possess numerous unknown functions. We have recently reported that short interfering RNAs (siRNAs) designed to target mouse-specific lncRNAs caused cell death exclusively in human cancer cells, sparing normal human cells and mouse cancer cells. However, it is uncertain whether other non-human species-specific lncRNAs could also be applied as sequential targets for designing anti-tumor therapeutic siRNAs.

View Article and Find Full Text PDF

Two new two-dimensional (2D) coordination polymers, [Fe(L){Pd(SCN)}] (L = 2-methoxypyrazine, 1; and L = ()-3-(phenyldiazenyl)pyridine, 2), were successfully constructed by using square-planar [Pd(SCN)] building blocks. Complex 1 exhibits complete and one-step spin-crossover (SCO) behavior, while 2 exhibits incomplete and two-step SCO behavior. Further structural insight into this synergy reveals that the flat/flexing [Fe{Pd(SCN)}] sheets in 1 and 2 are stabilized by interlayered/intralayered supramolecular interactions.

View Article and Find Full Text PDF

A major impediment to the clinical translation of DNA tiling nanostructures is a technical bottleneck for the programmable assembly of DNA architectures with well-defined local geometry due to the inability to achieve both sufficient structural rigidity and a large framework. In this work, a Y-backbone was inserted into each face to construct a superlarge, sufficiently rigidified tetrahedral DNA nanostructure (called RDT) with extremely high efficiency. In RDT, the spatial size increased by 6.

View Article and Find Full Text PDF

Stepped spin crossover (SCO) complexes with three or more spin states have promising applications in high-order data storage, multi-switches and multi-sensors. Further synergy with other functionalities, such as luminescence and dielectric properties, will provide a good chance to develop novel multifunctional SCO materials. Here, a bent pillar ligand and luminescent pyrene guest are integrated into a three-dimensional (3D) Hofmann-type metal-organic framework (MOF) [Fe(dpoda){Au(CN)}]·pyrene (dpoda = 2,5-di-(pyridyl)-1,3,4-oxadiazole).

View Article and Find Full Text PDF

While engineered DNA nanoframeworks have been extensively exploited for delivery of diagnostic and therapeutic regents, DNA tiling-based DNA frameworks amenable to applications in living systems lag much behind. In this contribution, by developing a Y-shaped backbone-based DNA tiling technique, we assemble Y-shaped backbone-rigidified supersized DNA tetrahedrons (RDT) with 100% efficiency for precisely targeted tumor therapy. RDT displays unparalleled rigidness and unmatched resistance to nuclease degradation so that it almost does not deform under the force exerted by the atomic force microscopy tip, and the residual amount is not less than 90% upon incubating in biological media for 24 h, displaying at least 11.

View Article and Find Full Text PDF

Background: Japanese encephalitis virus (JEV) remains a predominant cause of Japanese encephalitis (JE) globally. Its infection is usually accompanied by disrupted blood‒brain barrier (BBB) integrity and central nervous system (CNS) inflammation in a poorly understood pathogenesis. Productive JEV infection in brain microvascular endothelial cells (BMECs) is considered the initial event of the virus in penetrating the BBB.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated the ECG features of ventricular arrhythmias (VAs) originating near the mitral annulus (MA) in 283 patients who underwent radiofrequency catheter ablation.
  • By analyzing ECG data, the research established specific markers (like intrinsicoid deflection time and maximum deflection index) that could predict whether the VAs were coming from the epicardial or endocardial areas.
  • The findings showed strong predictive values for identifying the origin of VAs based on ECG characteristics, which can aid in creating targeted ablation strategies.
View Article and Find Full Text PDF

Purpose: This study was conducted to reexamine the question of whether children treated for anisometropic amblyopia have contour integration deficits. To do so, we used psychophysical methods that require global contour processing while minimizing the influence of low-level deficits: visibility, shape perception, and positional uncertainty.

Methods: Thirteen children with anisometropic amblyopia (age: 10.

View Article and Find Full Text PDF

Inner-outer asymmetry, where the outer flanker induces stronger crowding than the inner flanker, is a hallmark property of visual crowding. It is unclear the contribution of inner-outer asymmetry to the pattern of crowding errors (biased predominantly toward the flanker identities) and the role of training on crowding errors. In a typical radial crowding display, 20 observers were asked to report the orientation of a target Gabor (7.

View Article and Find Full Text PDF

Objectives: The aim of the study was to evaluate the distribution and function of contact-dependent growth inhibition (CDI) systems associated with carbapenem-resistant Acinetobacter baumannii (CRAB) isolates.

Methods: Isolates were examined by multilocus sequence typing (MLST) and polymerase chain reaction (PCR) for the presence of CDI genes in CRAB and carbapenem-susceptible A. baumannii (CSAB) from patients with invasive disease in a medical center in Taiwan.

View Article and Find Full Text PDF

With the use of DNA as building blocks, a variety of microRNA amplification-based sensing systems have been developed. Nevertheless, ultrasensitive, selective and rapid detection of microRNAs with a high signal-to-background ratio and point mutation discrimination ability remains a challenge. Herein, we propose a novel wheel drive-based DNA sensing system (NWDS) based on a self-assembled, self-quenched nanoprobe (SQP) to conduct highly specific and ultrasensitive one-step measurement of microRNAs.

View Article and Find Full Text PDF

(1) Background: Radiofrequency catheter ablation (RFCA) is an essential treatment for ventricular arrhythmia (VA). However, high impedance in the transitional area of the distal great cardiac vein (TAODGCV) often leads to ablation failure. This study aimed to explore the factors influencing impedance and identify effective ways to reduce impedance.

View Article and Find Full Text PDF

Uniformly narrowed internal carotid artery (ICA) without proximal steno-occlusion or parietal anomalies is often subject to misdiagnosis due to lack of awareness. We combined our experiences of 4 cases with 29 previously published cases to form a retrospective series including 18 cases of ICA hypoplasia and 15 cases of ICA acquired narrowing. The ultrasonic manifestations of ICA acquired narrowing and ICA hypoplasia are extremely similar, but narrowed ICA without intracranial occlusion or bottle-neck-sign highly indicates ICA hypoplasia, whereas moyamoya vessels favor ICA acquired narrowing, thus promoting the understanding of and discriminability between the two on neurovascular ultrasound.

View Article and Find Full Text PDF

The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood-brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR.

View Article and Find Full Text PDF

Background: Interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown.

View Article and Find Full Text PDF

DNA nanotechnology is often used to build various nano-structures for signaling and/or drug delivery, but it essentially suffers from several major limitations, such as a large number of DNA strands and limited targeting ligands. Moreover, there is no report on two-dimensional DNA arrays because of various technical challenges. By cross-catenating two palindromic DNA rings, herein, we demonstrate a catenane-based grid-patterned periodic DNA monolayer array ([2]GDA) capable of preferentially accumulating in tumor tissues without any targeting ligands, with a thickness equal to the double-helical DNA monolayer (nearly 2 nm).

View Article and Find Full Text PDF

Limosilactobacillusreuteri was encapsulated using Maillard-reaction-products (MRPs) of soy protein isolate (SPI) and α-lactose monohydrate by freeze-drying. The mixed solution of SPI and α-lactose monohydrate was placed in a water bath at 89°C for 160 min for Maillard reaction, and then freeze-dried to obtain MRPs. The effects of Maillard reaction on functional characteristics of MRPs and the properties of MRPs-microcapsules were studied.

View Article and Find Full Text PDF

Species-specific lncRNAs significantly determine species-specific functions through various ways, such as epigenetic regulation. However, there has been no study focusing on the role of species-specific lncRNAs in other species yet. Here, we found that siRNAs targeting mouse-specific lncRNA AA388235 could significantly induce death of human tumor cells, although it has no effect on mouse tumor cells and normal human cells.

View Article and Find Full Text PDF

Background: Chinese te-flavor baijiu (CTF), the most famous Chinese baijiu in Jiangxi province, China, is made from a unique daqu. Its characteristic style is closely related to the daqu used for fermentation. However, current studies on the effects of different production seasons on microbial communities, physicochemical indices, and volatile compounds in CTF daqu are very rare.

View Article and Find Full Text PDF

DNA nanotechnology can be used to precisely construct nanostructures of different shapes, sizes and surface chemistry, which is appreciated in a variety of areas such as biomaterials, nanodevices, disease diagnosis, imaging, and drug delivery. Enzymatic degradation resistance and cell-targeting capability are indispensable for the applications of DNA nanostructures in biological and biomedical fields, and is challenging to rationally design the desirable nanoscale DNA materials suitable for the clinical translation by the existing assembly methodologies. Herein, we present a simple and efficient method for the hierarchical assembly of a three-level DNA ring-based nanostructure (DNA h-Nanoring) in a precise order, where DNA compositions at the primary level, the second level and the third level are a single DNA ring, two-ring-hybridized duplex and uniform complex macro-cycle, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • * The review highlights advancements in methods and technologies for analyzing nucleic acids, as well as their applications in fields like biology, medicine, environmental science, food safety, and forensics.
  • * It also discusses the benefits and challenges of these methods, along with future research directions needed to overcome existing limitations.
View Article and Find Full Text PDF

It is of great importance to design and fabricate heterojunction photocatalysts to improve photocatalytic performance. In this work, a novel ZIF-67/AgCl/Ag heterojunction photocatalyst was successfully synthesized by a facile chemical etching, deposition-precipitation, light-induced reduction approach. After chemical etching by a AgNO precursor, the crystal size of ZIF-67 decreased remarkably together with the replacement of Co in the framework of ZIF-67 by Ag surface ion exchange.

View Article and Find Full Text PDF