Luminescent probes have been used for the detection of various heavy metals and toxic compounds. A novel sensor with excellent sensitivity and selectivity is in high demand. Herein, we designed and synthesized a three-dimensional copper-organic framework of "pcu" α-Po primitive cubic topology with a Schläfli symbol of {4.
View Article and Find Full Text PDFBundled piezoelectric motors combine several actuators to achieve high output power. However, mutual interference between the actuators leads to reduction in working efficiency. This work presents an adaptive stator that can reduce the mutual interference in bundled piezowalk motors.
View Article and Find Full Text PDFRNA polymerase (RNAP), the transcription machinery, shows dynamic binding across the genomic DNA under different growth conditions. The genomic features that selectively redistribute the limited RNAP molecules to dictate genome-wide transcription in response to environmental cues remain largely unknown. We chose the bacterial osmotic stress response model to determine genomic features that direct genome-wide redistribution of RNAP during the stress.
View Article and Find Full Text PDFIn the fast-growing cells, RNA polymerase (RNAP) molecules are concentrated and form foci at clusters of ribosomal RNA (rRNA) operons resembling eukaryotic nucleolus. The bacterial nucleolus-like organization, spatially compartmentalized at the surface of the compact bacterial chromosome (nucleoid), serves as transcription factories for rRNA synthesis and ribosome biogenesis, which influences the organization of the nucleoid. Unlike wild type that has seven rRNA operons in the genome in a mutant that has six (Δ6) rRNA operons deleted in the genome, there are no apparent transcription foci and the nucleoid becomes uncompacted, indicating that formation of RNAP foci requires multiple copies of rRNA operons clustered in space and is critical for nucleoid compaction.
View Article and Find Full Text PDFEscherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The NAD+-dependent protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modification in E. coli.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
February 2017
We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques.
View Article and Find Full Text PDFMembers of the Swi2/Snf2 (switch/sucrose non-fermentable) family depend on their ATPase activity to mobilize nucleic acid-protein complexes for gene expression. In bacteria, RapA is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein that mediates RNAP recycling during transcription. It is known that the ATPase activity of RapA is stimulated by its interaction with RNAP.
View Article and Find Full Text PDFOur knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment and highlights the challenges in the study. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP.
View Article and Find Full Text PDFIn a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown.
View Article and Find Full Text PDFObjectives: To systematically review the effects of tolerogenic dendritic cells (Tol-DCs) induced by different methods on liver transplantation and their possible mechanisms of action.
Methods: PubMed and EMbase were searched for relevant articles through 31 December 2013. The effects of Tol-DCs on liver allograft survival were semiquantitatively evaluated, and the possible mechanisms by which Tol-DCs prolong graft survival were analyzed.
Objective: The aim of this study was to systematically review the effects of transfusing Tol-DCs induced by different methods on renal transplantation and survival time.
Method: PubMed and EMbase were searched for relevant articles from inception to July 20(th), 2013. Renal allograft survival time was regarded as the endpoint outcome.
Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA.
View Article and Find Full Text PDFGrowth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation.
View Article and Find Full Text PDFOne of the hallmarks of the Swi2/Snf2 family members is their ability to modify the interaction between DNA-binding protein and DNA in controlling gene expression. The studies of Swi2/Snf2 have been mostly focused on their roles in chromatin and/or nucleosome remodeling in eukaryotes. A bacterial Swi2/Snf2 protein named RapA from Escherichia coli is a unique addition to these studies.
View Article and Find Full Text PDFHelicobacter pylori persists deep in the human gastric mucus layer in a harsh, nutrient-poor environment. Survival under these conditions depends on the ability of this human pathogen to invoke starvation/stress responses when needed. Unlike many bacteria, H.
View Article and Find Full Text PDFIn Helicobacter pylori the stringent response is mediated solely by spoT. The spoT gene is known to encode (p)ppGpp synthetase activity and is required for H. pylori survival in the stationary phase.
View Article and Find Full Text PDFRapA, as abundant as sigma70 in the cell, is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein with ATPase activity. It stimulates RNAP recycling during transcription. We report a structure of RapA that is also a full-length structure for the entire Swi2/Snf2 family.
View Article and Find Full Text PDFIn this study we further defined the rifampin-binding sites in Escherichia coli RNA polymerase (RNAP) and determined the relationship between rifampin-binding sites and the binding sites of other antibiotics, including two rifamycin derivatives, rifabutin and rifapentine, and streptolydigin and sorangicin A, which are unrelated to rifampin, using a purified in vitro system. We found that there is almost a complete correlation between resistance to rifampin (Rif(r)) and reduced rifampin binding to 12 RNAPs purified from different rpoB Rif(r) mutants and a complete cross-resistance among the different rifamycin derivatives. Most Rif(r) RNAPs were sensitive to streptolydigin, although some exhibited weak resistance to this antibiotic.
View Article and Find Full Text PDF