Publications by authors named "Yan Ling Joy Pang"

In recent years, the usage of digital polymerase chain reaction (dPCR) for various clinical applications has increased exponentially. In this study, a dPCR assay optimized on the Clarity Plus™ dPCR system was evaluated for the absolute quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) outbreak. The assay demonstrated good inter- and intra- assay precision, accuracy, as well as excellent linearity across a range of over 6 orders of magnitude for target gene quantification.

View Article and Find Full Text PDF

Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of contains ligands, such as tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria.

View Article and Find Full Text PDF

Here we describe an analytical platform for systems-level quantitative analysis of modified ribonucleosides in any RNA species, with a focus on stress-induced reprogramming of tRNA as part of a system of translational control of cell stress response. This chapter emphasizes strategies and caveats for each of the seven steps of the platform workflow: (1) RNA isolation, (2) RNA purification, (3) RNA hydrolysis to individual ribonucleosides, (4) chromatographic resolution of ribonucleosides, (5) identification of the full set of modified ribonucleosides, (6) mass spectrometric quantification of ribonucleosides, (6) interrogation of ribonucleoside datasets, and (7) mapping the location of stress-sensitive modifications in individual tRNA molecules. We have focused on the critical determinants of analytical sensitivity, specificity, precision, and accuracy in an effort to ensure the most biologically meaningful data on mechanisms of translational control of cell stress response.

View Article and Find Full Text PDF

A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species.

View Article and Find Full Text PDF

Emerging evidence points to roles for tRNA modifications and tRNA abundance in cellular stress responses. While isolated instances of stress-induced tRNA degradation have been reported, we sought to assess the effects of stress on tRNA levels at a systems level. To this end, we developed a next-generation sequencing method that exploits the paucity of ribonucleoside modifications at the 3'-end of tRNAs to quantify changes in all cellular tRNA molecules.

View Article and Find Full Text PDF

The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes.

View Article and Find Full Text PDF

A renewed interest in non-coding RNA (ncRNA) has led to the discovery of novel RNA species and post-transcriptional ribonucleoside modifications, and an emerging appreciation for the role of ncRNA in RNA epigenetics. Although much can be learned by amplification-based analysis of ncRNA sequence and quantity, there is a significant need for direct analysis of RNA, which has led to numerous methods for purification of specific ncRNA molecules. However, no single method allows purification of the full range of cellular ncRNA species.

View Article and Find Full Text PDF

Selective translation of survival proteins is an important facet of the cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA. Here we report the discovery of a step-wise translational control mechanism responsible for survival following oxidative stress.

View Article and Find Full Text PDF

Leucyl-tRNA synthetase (LeuRS) has been identified as a target for a novel class of boron-containing small molecules that bind to its editing active site. When the 3' end of tRNA(Leu) binds to the editing active site, the boron cross-links to the cis-diols of its terminal ribose. The cross-linked RNA-protein complex blocks the overall aminoacylation activity of the enzyme.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetase mutations have been linked to neurological diseases, but aminoacylation may be unaffected. This protein superfamily also performs many other diverse functions. Yang et al.

View Article and Find Full Text PDF

Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain.

View Article and Find Full Text PDF