Publications by authors named "Yan Levin"

We introduce an efficient method for simulating Coulomb systems confined by conducting planar surfaces. The new approach is suitable for both coarse-grained models and all-atom simulations of ionic liquids between polarizable metal electrodes. To demonstrate its efficiency, we use the new method to study the differential capacitance of an ionic liquid.

View Article and Find Full Text PDF

We explore the charge regulation (CR) of spherical nanoparticles immersed in an asymmetric electrolyte of a specified pH. Using a recently developed reactive canonical Monte Carlo (MC) simulation method, titration isotherms are obtained for suspensions containing monovalent, divalent, and trivalent coions. A theory based on the modified Poisson-Boltzmann approximation, which incorporates the electrostatic ion solvation free energy and discrete surface charge effects, is used to compare with the simulation results.

View Article and Find Full Text PDF

Constant pH (cpH) simulations are now a standard tool for investigating charge regulation in coarse-grained models of polyelectrolytes and colloidal systems. Originally developed for studying solutions with implicit ions, extending this method to systems with explicit ions or solvents presents several challenges. Ensuring proper charge neutrality within the simulation cell requires performing titration moves in sync with the insertion or deletion of ions, a crucial aspect often overlooked in the literature.

View Article and Find Full Text PDF

We present a Monte Carlo approach for performing titration simulations in the canonical ensemble. The standard constant pH (cpH) simulation methods are intrinsically grand canonical, allowing us to study the protonation state of molecules only as a function of pH in the reservoir. Due to the Donnan potential between a system and an (implicit) reservoir of a semi-grand canonical simulation, the pH of the reservoir can be significantly different from that of an isolated system, for an identical protonation state.

View Article and Find Full Text PDF

We present a Monte Carlo approach that allows us to easily implement Lynden-Bell (LB) entropy maximization for an arbitrary initial particle distribution. The direct maximization of LB entropy for an arbitrary initial distribution requires an infinite number of Lagrange multipliers to account for the Casimir invariants. This has restricted studies of Lynden-Bell's violent relaxation theory to only a very small class of initial conditions of a very simple waterbag form, for which the entropy maximization can be performed numerically.

View Article and Find Full Text PDF

We discuss problems associated with the notion of pH in heterogeneous systems. For homogeneous systems, standardization protocols lead to a well-defined quantity, which, although different from Sørensen's original idea of pH, is well reproducible and has become accepted as the measure of the "hydrogen potential". On the other hand, for heterogeneous systems, pH defined in terms of the chemical part of the electrochemical activity is thermodynamically inconsistent and runs afoul of the Gibbs-Guggenheim principle that forbids splitting of the electrochemical potential into separate chemical and electrostatic parts, since only the sum of two has any thermodynamic meaning.

View Article and Find Full Text PDF

We present a simulation method that allows us to calculate the titration curves for systems undergoing protonation/deprotonation reactions-such as charged colloidal suspensions with acidic/basic surface groups, polyelectrolytes, polyampholytes, and proteins. The new approach allows us to simultaneously obtain titration curves both for systems in contact with salt and acid reservoir (semi-grand canonical ensemble) and for isolated suspensions (canonical ensemble). To treat the electrostatic interactions, we present a new method based on Ewald summation-which accounts for the existence of both Bethe and Donnan potentials within the simulation cell.

View Article and Find Full Text PDF

We investigate charge regulation of nanoparticles in concentrated suspensions, focusing on the effect of different statistical ensembles. We find that the choice of ensemble does not affect the mean charge of nanoparticles, but significantly alters the magnitude of its fluctuation. Specifically, we compared the behaviors of colloidal charge fluctuations in the semi-grand canonical and canonical ensembles and identified significant differences between the two.

View Article and Find Full Text PDF

In many practical applications, ions are the primary charge carrier and must move through either semipermeable membranes or through pores, which mimic ion channels in biological systems. In analogy to electronic devices, the "iontronic" ones use electric fields to induce the charge motion. However, unlike the electrons that move through a conductor, motion of ions is usually associated with simultaneous solvent flow.

View Article and Find Full Text PDF

In a recent review Landsgesell , 2019, , 1155 stated that pH - p is a "universal parameter" for titrating systems. We show that this is not the case. This broken symmetry has important implications for constant pH (cpH) simulations.

View Article and Find Full Text PDF

We use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices.

View Article and Find Full Text PDF

We present a theory that enables us to (i) calculate the effective surface charge of colloidal particles and (ii) efficiently obtain titration curves for different salt concentrations. The theory accounts for the shift of pH of solution due to the presence of 1:1 electrolyte. It also accounts self-consistently for the electrostatic potential produced by the deprotonated surface groups.

View Article and Find Full Text PDF

We discuss the application of the Widom insertion method for calculation of the chemical potential of individual ions in computer simulations with Ewald summation. Two approaches are considered. In the first approach, an individual ion is inserted into a periodically replicated overall charge neutral system representing an electrolyte solution.

View Article and Find Full Text PDF

We study the reversal of electroosmotic flow in charged cylindrical nanopores containing multivalent electrolyte. Dissipative particle dynamics is used to simulate the hydrodynamics of the electroosmotic flow. The electrostatic interactions are treated using 3D Ewald summation, corrected for a pseudo-one-dimensional geometry of the pore.

View Article and Find Full Text PDF

We use a reactive Monte Carlo simulation method and the primitive model of electrolyte to study acid-base equilibrium that controls charge regulation in colloidal systems. The simulations are performed in a semi-grand canonical ensemble in which colloidal suspension is in contact with a reservoir of salt and strong acid. The interior of colloidal particles is modeled as a low dielectric medium, different from the surrounding water.

View Article and Find Full Text PDF

We present a simulation method to study electroosmotic flow in charged nanopores with dielectric contrast between their interior and the surrounding medium. To perform simulations, we separate the electrostatic energy into the direct Coulomb and the polarization contributions. The polarization part is obtained using periodic Green functions and can be expressed as a sum of fast converging modified Bessel functions.

View Article and Find Full Text PDF

In this work, we consider a lattice-gas model of charge regulation with electrostatic interactions within the Debye-Hückel level of approximation. In addition to long-range electrostatic interactions, the model incorporates the nearest-neighbor interactions for representing non-electrostatic forces between adsorbed ions. The Frumkin-Fowler-Guggenheim isotherm obtained from the mean-field analysis accurately reproduces the simulation data points.

View Article and Find Full Text PDF

We present a theory which allows us to calculate the interaction potential between charge-regulated metal nanoparticles inside an acid-electrolyte solution. The approach is based on the recently introduced model of charge regulation which permits us to explicitly-within a specific microscopic model-relate the bulk association constant of a weak acid to the surface association constant for the same weak acid adsorption sites. When considering metal nanoparticles we explicitly account for the effect of the induced surface charge in the conducting core.

View Article and Find Full Text PDF

We study the charge regulation of colloidal particles inside aqueous electrolyte solutions. To stabilize a colloidal suspension against precipitation, colloidal particles are synthesized with either acidic or basic groups on their surface. On contact with water, these surface groups undergo proton transfer reactions, resulting in colloidal surface charge.

View Article and Find Full Text PDF