A cobalt-diphosphine catalyst has been found to promote a selective 1:2 coupling reaction between aldehydes and allenes to form β,δ-dialkylidene ketones, featuring skipped diene moieties, with high regioselectivities and stereoselectivities. The reaction is distinct from previously reported, rhodium-catalyzed aldehyde-allene 1:2 coupling to afford β,γ-dialkylidene ketones bearing 1,3-diene moieties. The present hydroacylative dimerization involves a unique allene/allene oxidative cyclization mode to form a C1-C2 linkage between the allene molecules.
View Article and Find Full Text PDFMechanochemistry is a green, solid-state, re-emerging synthetic technique that can rapidly form complex molecules and materials without exogenous heat or solvent(s). Herein, we report the application of solvent-free mechanochemical ball milling for the synthesis of metal halide perovskites, to overcome problems with solution-based syntheses. We prepared phase-pure, air-sensitive CsSnX (X = I, Br, Cl) and its mixed halide perovskites by mechanochemistry for the first time by reactions between cesium and tin(II) halides.
View Article and Find Full Text PDF