Publications by authors named "Yan Ho Cheng"

Context: - Cytomegalovirus (CMV) can be transmitted by cellular blood products, leading to severe disease in immunosuppressed patients such as neonates and transplant recipients. To mitigate transfusion-transmitted CMV (TT-CMV), "CMV-safe" blood products (leukoreduced and/or CMV-seronegative) are transfused. Attempts to develop practice guidelines for TT-CMV mitigation have been limited by paucity of high-quality clinical trials.

View Article and Find Full Text PDF

Background: Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated.

Objective: Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents.

View Article and Find Full Text PDF

Breast cancer resistant protein (BCRP, ABCG2) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein foun d in eukaryotic cells including cells in the testis. However, unlike P-gp and MRP1, which are components of the Sertoli cell blood-testis barrier (BTB), BCRP is not expressed at the BTB in rodents and human testes. Instead, BCRP is expressed by peritubular myoid cells and endothelial cells of the lymphatic vessel in the tunica propria, residing outside the BTB.

View Article and Find Full Text PDF

The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility.

View Article and Find Full Text PDF

Non-receptor protein tyrosine kinases are cytoplasmic kinases that activate proteins by phosphorylating tyrosine residues, which in turn affect multiple functions in eukaryotic cells. Herein, we focus on the role of non-receptor protein tyrosine kinases, most notably, FAK, c-Yes and c-Src, in the transport of spermatids across the seminiferous epithelium during spermatogenesis. Since spermatids, which are formed from spermatocytes via meiosis, are immotile haploid cells, they must be transported by Sertoli cells across the seminiferous epithelium during the epithelial cycle of spermatogenesis.

View Article and Find Full Text PDF

For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.

View Article and Find Full Text PDF

RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein.

View Article and Find Full Text PDF

In the seminiferous epithelium of the mammalian testis, the most distinctive ultrastructure is the extensive bundles of actin filaments that lie near the Sertoli-spermatid interface and the Sertoli-Sertoli cell interface known as the apical ectoplasmic specialization (apical ES) and the basal ES, respectively. These actin filament bundles not only confer strong adhesion at these sites, they are uniquely found in the testis. Recent studies have shown that ES also confers spermatid and Sertoli cell polarity in the seminiferous epithelium during the epithelial cycle.

View Article and Find Full Text PDF

Breast cancer resistance protein (Bcrp) is an ATP-dependent efflux drug transporter. It has a diverse spectrum of hydrophilic and hydrophobic substrates ranging from anticancer, antiviral and antihypertensive drugs, to organic anions, antibiotics, phytoestrogens (e.g.

View Article and Find Full Text PDF

The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in mammals including rodents and humans. It is used to sequester meiosis I and II, postmeiotic spermatid development via spermiogenesis and the release of sperm at spermiation from the systemic circulation, such that these events take place in an immune-privileged site in the adluminal (apical) compartment behind the BTB, segregated from the host immune system. Additionally, drug transporters, namely efflux (e.

View Article and Find Full Text PDF

During spermatogenesis, spermatogonial stem cells, undifferentiated and differentiated spermatogonia, spermatocytes, spermatids and spermatozoa all express specific antigens, yet the functions of many of these antigens remain unexplored. Studies in the past three decades have shown that many of these transiently expressed genes in developing germ cells are proto-oncogenes and oncogenes, which are expressed only in the testis and various types of cancers in humans and rodents. As such, these antigens are designated cancer/testis antigens (CT antigens).

View Article and Find Full Text PDF

Recent studies have demonstrated the presence of a functional axis that coordinates the events of spermiation and blood-testis barrier (BTB) restructuring which take place simultaneously at the opposite ends of the seminiferous epithelium at stage VIII of the epithelial cycle of spermatogenesis in the rat testis. In short, the disruption of the apical ectoplasmic specialization (apical ES) at the Sertoli cell-elongated spermatid interface, which facilitates the release of sperm at spermiation near the tubule lumen, is coordinated with restructuring at the BTB to accommodate the transit of preleptotene spermatocytes across the immunological barrier near the basement membrane. These two events are likely coordinated by a functional axis involving hemidesmosome at the Sertoli cell-basement membrane interface, and it was designated the apical ES-BTB-hemidesmosome axis.

View Article and Find Full Text PDF

Earlier studies have shown that germ cells or germ cell-conditioned media are capable of regulating alpha2-macroglobulin (alpha2-MG, a non-specific protease inhibitor) expression by Sertoli cells and hepatocytes cultured in vitro. These results illustrate a possible physiological link between testes and liver regarding alpha2-MG production. Using a series of surgical procedures including castration, hemicastration, and hepatectomy coupled with Northern blot and immunoblot analyses, we report herein that the surge in alpha2-MG expression in the liver in response to inflammation is indeed regulated, at least in part, by the testis via testosterone.

View Article and Find Full Text PDF