Publications by authors named "Yan Choi Lam"

Selective oxidation of alcohols to their corresponding aldehyde or carboxylic acid is one of the most important classes of organic synthesis reactions. In addition, electrochemical alcohol oxidation is considered a viable anode reaction that can be paired with H evolution or other reductive fuel production reactions in electrochemical and photoelectrochemical cells. NiOOH, a material that has been extensively studied as an oxygen evolution catalyst, is among the most promising electrocatalysts for selective alcohol oxidation.

View Article and Find Full Text PDF

Recently selective C-H bond cleavage under mild conditions with weak oxidants was reported for fluorenyl-benzoates. This mechanism is based on multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an outer-sphere oxidant coupled to intramolecular proton transfer to a well-positioned proton acceptor. The electron transfer driving force depends predominantly on the oxidant, and the proton transfer driving force depends mainly on the basicity of the carboxylate, which is influenced by the substituent on the benzoate fragment.

View Article and Find Full Text PDF

Proton discharge on metal electrodes, also denoted the Volmer reaction, is a critical step in a wide range of electrochemical processes. This electrochemical proton-coupled electron transfer (PCET) reaction is predominantly electronically adiabatic in aqueous solution and is typically treated as fully adiabatic. Recently, a theoretical model for this PCET reaction was developed to generate the vibronic free energy surfaces as functions of a collective solvent coordinate and the distance of the proton-donating acid from the electrode.

View Article and Find Full Text PDF

The discharge of protons on electrode surfaces, known as the Volmer reaction, is a ubiquitous reaction in heterogeneous electrocatalysis and plays an important role in renewable energy technologies. Recent experiments with triethylammonium (TEAH) donating the proton to a gold electrode in acetonitrile demonstrate significantly different Tafel slopes for TEAH and its deuterated counterpart, TEAD. As a result, the kinetic isotope effect (KIE) for the hydrogen evolution reaction changes considerably as a function of applied potential.

View Article and Find Full Text PDF

Density functional theory (DFT, B3LYP-D3 with implicit solvation in toluene) was used to investigate the mechanisms of olefin hydrosilylation catalyzed by PDI(Fe) (bis(imino)pyridine iron) complexes, where PDI = 2,6-(ArN[double bond, length as m-dash]CMe)(CHN) with Ar = 2,6-R-CH. We find that the rate-determining step for hydrosilylation is hydride migration from EtSiH onto the Fe-bound olefin to form (PDI)Fe(alkyl)(SiEt). This differs from the mechanism for the Pt Karstedt catalyst in that there is no prior Si-H oxidative addition onto the Fe center.

View Article and Find Full Text PDF

Intersystem crossing (ISC) in solid [(CH)N][Pt(μ-PO(BF))], abbreviated Pt(pop-BF), is remarkably slow for a third-row transition metal complex, ranging from τ ≈ 0.9 ns at 310 K to τ ≈ 29 ns below 100 K. A classical model based on Boltzmann population of one temperature-independent and two thermally activated pathways was previously employed to account for the ISC rate behavior.

View Article and Find Full Text PDF

High-resolution fluorescence, phosphorescence, as well as related excitation spectra, and, in particular, the emission decay behavior of solid [Bu4N]4[Pt2(μ-P2O5(BF2)2)4], abbreviated Pt(pop-BF2), have been investigated over a wide temperature range, 1.3-310 K. We focus on the lowest excited states that result from dσ*pσ (5dz(2)-6pz) excitations, i.

View Article and Find Full Text PDF

[Pt2(μ-P2O5H2)4](4-) (Pt(pop)) and its perfluoroborated derivative [Pt2(μ-P2O5(BF2)2)4](4-) (Pt(pop-BF2)) are d(8)-d(8) complexes whose electronic excited states can drive reductions and oxidations of relatively inert substrates. We performed spin-orbit (SO) TDDFT calculations on these complexes that account for their absorption spectra across the entire UV-vis spectral region. The complexes exhibit both fluorescence and phosphorescence attributable, respectively, to singlet and triplet excited states of dσ*pσ origin.

View Article and Find Full Text PDF

Light alkanes and alkenes are abundant but are underutilized as energy carriers because of their high volatility and low energy density. A tandem catalytic approach for the coupling of alkanes and alkenes has been developed in order to upgrade these light hydrocarbons into heavier fuel molecules. This process involves alkane dehydrogenation by a pincer-ligated iridium complex and alkene dimerization by a Cp*TaCl2(alkene) catalyst.

View Article and Find Full Text PDF

Analysis of variable-temperature fluorescence quantum yield and lifetime data for per(difluoroboro)tetrakis(pyrophosphito)diplatinate(II) ([Pt(2)(μ-P(2)O(5)(BF(2))(2))(4)](4-), abbreviated Pt(pop-BF(2))), yields a radiative decay rate (k(r) = 1.7 × 10(8) s(-1)) an order of magnitude greater than that of the parent complex, Pt(pop). Its temperature-independent and activated intersystem crossing (ISC) pathways are at least 18 and 142 times slower than those of Pt(pop) [ISC activation energies: 2230 cm(-1) for Pt(pop-BF(2)); 1190 cm(-1) for Pt(pop)].

View Article and Find Full Text PDF