On global scale, eutrophication is one of the most prevalent environmental threats to water quality, primarily caused by elevated concentration of nutrients in wastewater. This study utilizes aluminum dross (AD), an industrial waste, to create a value-added material by improving its operational feasibility and application for removing phosphate and ammonium from water. The operational challenges of AD such as its powdered nature and effective operation under only extreme pH conditions were addressed by immobilizing in calcium alginate to form calcium alginate aluminium dross (Ca-Alg-Al dross) beads.
View Article and Find Full Text PDFThe need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was converted to high-value material by encapsulation in calcium alginate (Ca-Alg) beads, viz. Ca-Alg-AD and utilized for adsorptive/uptake removal and phosphate recovery from an aqueous environment.
View Article and Find Full Text PDFThere is an urgent need to develop low-cost technology for effective wastewater treatment and its further disinfection to the level that makes it economically useful. This work has designed and evaluated the various types of constructed wetlands (CWs) followed by a slow sand filter (SSF) for wastewater treatment and disinfection. The studied CWs were, CWs with gravels (CW-G), free water surface-CW (FWS-CWs), and CWs integrated microbial fuel cell (MFC) with granular graphite (CW-MFC-GG) planted with Canna indica plant species.
View Article and Find Full Text PDFMicrobial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far.
View Article and Find Full Text PDFA novel earthen separator-based dual-chambered unplanted core of constructed wetland coupled with microbial fuel cell was developed for studying the microbe-material interaction and their effect on treatment performance and electricity generation. The constructed wetland integrated microbial fuel cell was evaluated for the degradation of high molecular weight diazo Congo red dye as a model pollutant. The system exhibited 89.
View Article and Find Full Text PDF