Publications by authors named "Yaming Gong"

Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.

View Article and Find Full Text PDF

Peas ( L.) serve as a vital model for plant development and stress research. The () gene family, encoding essential motor proteins, remains understudied in peas.

View Article and Find Full Text PDF

Peas are essential for human nutrition and played a crucial role in the discovery of Mendelian laws of inheritance. In this study, we assembled the genome of the elite vegetable pea cultivar 'Zhewan No. 1' at the chromosome level and analyzed resequencing data from 314 accessions, creating a comprehensive map of genetic variation in peas.

View Article and Find Full Text PDF

Background: Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean.

Results: In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.

View Article and Find Full Text PDF

The freshness of vegetable soybean (VS) is an important indicator for quality evaluation. Currently, deep learning-based image recognition technology provides a fast, efficient, and low-cost method for analyzing the freshness of food. The RGB (red, green, and blue) image recognition technology is widely used in the study of food appearance evaluation.

View Article and Find Full Text PDF

Ascochyta blight caused by Ascochyta pisi is a major constraint to pea (Pisum sativum L.) production worldwide. Deciphering the pathogenic mechanism of on peas will help in breeding resistant pea varieties and developing effective approaches for disease management.

View Article and Find Full Text PDF

Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to play important roles in plant abiotic stress responses. However, evidence for the promoters of TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the vegetable soybean gene, which had the highest similarity to TIP1-type AQPs from other plants, was cloned.

View Article and Find Full Text PDF

Vegetable soybean is one of the most important vegetables in China, and the demand for this vegetable has markedly increased worldwide over the past two decades. Here, we present a high-quality de novo genome assembly of the vegetable soybean cultivar Zhenong 6 (ZN6), which is one of the most popular cultivars in China. The 20 pseudochromosomes cover 94.

View Article and Find Full Text PDF

Aquaporins (AQPs) are one diverse family of membrane channel proteins that play crucial regulatory roles in plant stress physiology. However, the heat stress responsiveness of genes in soybean remains poorly understood. In this study, 75 non-redundant AQP encoding genes were identified in soybean.

View Article and Find Full Text PDF

Leaf shape is an important trait that influences the utilization rate of light, and affects quality and yield of pea (). In the present study, a joint method of high-density genetic mapping using specific locus amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) was applied to rapidly detect loci with leaf shape traits. A total of 7,146 polymorphic SLAFs containing 12,213 SNP markers were employed to construct a high-density genetic map for pea.

View Article and Find Full Text PDF

TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, a family of plant-specific proteins, play crucial roles in plant growth and development and stress response. However, systematical information is unknown regarding the TCP gene family in soybean. In the present study, a total of 54 GmTCPs were identified in soybean, which were grouped into 11 groups with the typical TCP conserved domains.

View Article and Find Full Text PDF

Aquaporins (AQPs) constitute a highly diverse family of water channel proteins that play crucial biological functions in plant growth and development and stress physiology. In Arabidopsis, 35 AQPs are classified into four subfamilies (PIPs, TIPs, NIPs and SIPs). However, knowledge about the roles of different subfamily AQPs remains limited.

View Article and Find Full Text PDF

Chilling stress is a major factor limiting the yield and quality of vegetable soybean (Glycine max L.) on a global scale. In the present study, systematic identification and functional analysis of miRNAs under chilling stress were carried out to clarify the molecular mechanism of chilling resistance.

View Article and Find Full Text PDF

Ascochyta blight, an infection caused by a complex of Ascochyta pinodes, Ascochyta pinodella, Ascochyta pisi, and/or Phoma koolunga, is a destructive disease in many field peas (Pisum sativum L.)-growing regions, and it causes significant losses in grain yield. To understand the composition of fungi associated with this disease in Zhejiang Province, China, a total of 65 single-pycnidiospore fungal isolates were obtained from diseased pea samples collected from 5 locations in this region.

View Article and Find Full Text PDF

It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet.

View Article and Find Full Text PDF

Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.

View Article and Find Full Text PDF

The development of expressed sequence tag-derived simple sequence repeats (EST-SSRs) provided a useful tool for investigating plant genetic diversity. In the present study, 22 polymorphic EST-SSRs from grain soybean were identified and used to assess the genetic diversity in 48 vegetable soybean accessions. Among the 22 EST-SSR loci, tri-nucleotides were the most abundant repeats, accounting for 50.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on developing EST-derived SSR markers in peas (Pisum sativum) for genetic research and breeding.
  • A total of 41 new primers were created, showing significant size variation among 32 pea individuals from four different populations in China.
  • These markers can help in exploring genetic diversity and improving breeding practices in peas and related legumes like Vicia faba.
View Article and Find Full Text PDF

Premise Of The Study: Simple sequence repeat (SSR) markers were developed for faba bean using expressed sequence tags (ESTs) from the NCBI database to study for genetic diversity. •

Methods And Results: A total of 11 novel EST-SSR loci were generated and characterized when tested on four populations of 29 faba bean individuals from China and Europe. The number of alleles (A) ranged from 1 to 3 in each population, and observed heterozygosity (H(O)) and expected heterozygosity (H(E)) ranged from 0 to 0.

View Article and Find Full Text PDF

The development of expressed sequence tags (ESTs) from pea has provided a useful source for mining novel simple sequence repeat (SSR) markers. In the present research, in order to find EST-derived SSR markers, 18 552 pea ESTs from the National Center for Biotechnology Information (NCBI) database were downloaded and assembled into 10 086 unigenes. A total of 586 microsatellites in 530 unigenes were identified, indicating that merely 5.

View Article and Find Full Text PDF