Purpose: This study investigated whether RNA-Seq-based endometrial receptivity test (rsERT)-which provides precision for the optimal hour of the window of implantation (WOI)-can improve clinical outcomes of frozen embryo transfer (FET) cycles in patients with a history of repeated implantation failure (RIF).
Methods: Patients with a history of RIF who received at least one autologous high-quality blastocyst during the subsequent FET cycle were retrospectively enrolled and divided into two groups: rsERT and FET, comprising patients who underwent rsERT-guided pET (n=115) and standard FET without rsERT (n=272), respectively.
Results: In the rsERT group, 39.
The prominence and versatility of propargylic fluorides in medicinal chemistry, coupled with the potency of F/H and F/OH bioisosterism, has created a powerful impetus to develop efficient methods to facilitate their construction. Motivated by the well-established conversion of propargylic alcohols to allenes, an operationally simple, organocatalysis-based strategy to process these abundant unsaturated precursors to propargylic fluorides would be highly enabling: this would consolidate the bioisosteric relationship that connects propargylic alcohols and fluorides. Herein, we describe a highly regioselective fluorination of unactivated allenes based on I(I)/I(III) catalysis in the presence of an inexpensive HF source that serves a dual role as both nucleophile and Brønsted acid activator.
View Article and Find Full Text PDFGoos-Hänchen shift of total internal reflection (TIR) is the light beam movement without external driving, so envisioned to have potential manipulation of optical beams. In this article, with a silicon-on-insulator (SOI) waveguide corner structure, a variable equivalent permittivity of guided wave is modelled, and then the equivalent electric polarizabilities and the Goos-Hänchen shift of guided wave are modelled. Consequently, with a 2.
View Article and Find Full Text PDFBackground: Hemorrhagic fever with renal syndrome (HFRS) continues to pose a significant public health threat to the population in China. Previous epidemiological evidence indicates that HFRS is climate sensitive and influenced by meteorological factors. However, past studies either focused on too-narrow geographical regions or investigated time periods that were too early.
View Article and Find Full Text PDFContinuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage.
View Article and Find Full Text PDFMonitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments.
View Article and Find Full Text PDFThe Pauson-Khand reaction has in the past 50 years become one of the most common cycloaddition reactions in chemistry. Coupling two unsaturated bonds with carbon monoxide, the transformation remains limited to CO as a C building block. Herein we report analogous cycloaddition reactions with nitrenes as an N unit.
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2023
Optimizing the metabolic pathways of microbial cell factories is essential for establishing viable biotechnological production processes. However, due to the limited understanding of the complex setup of cellular machinery, building efficient microbial cell factories remains tedious and time-consuming. Machine learning (ML), a powerful tool capable of identifying patterns within large datasets, has been used to analyze biological datasets generated using various high-throughput technologies to build data-driven models for complex bioprocesses.
View Article and Find Full Text PDFBMC Public Health
November 2023
Background: The increasing number of pertussis cases worldwide over the past two decades has challenged healthcare workers, and the role of environmental factors and climate change cannot be ignored. The incidence of pertussis has increased dramatically in mainland China since 2015, developing into a serious public health problem. The association of meteorological factors on pertussis has attracted attention, but few studies have examined the impact of air pollutants on this respiratory disease.
View Article and Find Full Text PDFBMC Public Health
November 2023
Objectives: To outline 44 major infectious diseases in the post-SARS (severe acute respiratory syndrome) in China and describe their long-term trends and changes by age, sex, epidemic season, and province.
Background: After the outbreak of severe acute respiratory syndrome (SARS) in 2003, with the change of infectious disease prevention and control system and the improvement of residents' quality of life, the incidence and mortality of infectious diseases have undergone major changes.
Methods: The data of 44 major infectious diseases in China from 2004 to 2018 were obtained from the monthly analysis report of the China Information System for Disease Control and Prevention (CISDCP) and the Public Health Science Data Center.
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
September 2023
Background: Chronic entrapment neuropathy results in a clinical syndrome ranging from mild pain to debilitating atrophy. There remains a lack of objective metrics that quantify nerve dysfunction and guide surgical decision-making. Mechanomyography (MMG) reflects mechanical motor activity after stimulation of neuromuscular tissue and may indicate underlying nerve dysfunction.
View Article and Find Full Text PDFThe metabolic burden caused by terpenoid accumulation limits the development of highly efficient microbial cell factories, which can be circumvented using exporter-mediated product secretion. Although our previous study showed that the pleiotropic drug resistance exporter (PDR11) mediates the export of rubusoside in , the underlying mechanism is still unclear. Herein, we used GROMACS software to simulate PDR11-mediated rubusoside recruitment and found six residues (D116, D167, Y168, P521, R663, and L1146) on PDR11 that are critical for this process.
View Article and Find Full Text PDFBioresour Technol
February 2023
Bioprocess control and optimization are crucial for tapping the metabolic potential of microorganisms, and which have made great progress in the past decades. Combination of the current control and optimization technologies with the latest computer-based strategies will be a worth expecting way to improve bioprocess further. Recently, artificial intelligence (AI) emerged as a data-driven technique independent of the complex interactions used in mathematical models and has been gradually applied in bioprocess.
View Article and Find Full Text PDFPhysically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates.
View Article and Find Full Text PDFBackground: Commercially available near infrared spectroscopy devices for continuous free flap tissue oxygenation (StO) monitoring can only be used on flaps with a cutaneous component. Additionally, differences in skin quality and pigmentation may alter StO measurements. Here, we present a novel implantable heat convection probe that measures microvascular blood flow for peripheral monitoring of free flaps, and is not subject to the same issues that limit the clinical utility of near-infrared spectroscopy.
View Article and Find Full Text PDFImplantable devices capable of targeted and reversible blocking of peripheral nerve activity may provide alternatives to opioids for treating pain. Local cooling represents an attractive means for on-demand elimination of pain signals, but traditional technologies are limited by rigid, bulky form factors; imprecise cooling; and requirements for extraction surgeries. Here, we introduce soft, bioresorbable, microfluidic devices that enable delivery of focused, minimally invasive cooling power at arbitrary depths in living tissues with real-time temperature feedback control.
View Article and Find Full Text PDFHigh-sugar diet causes health problems, many of which can be addressed with the use of sugar substitutes. Rubusoside and rebaudiosides are interesting molecules, considered the next generation of sugar substitutes due to their low-calorie, superior sweetness and organoleptic properties. However, their low abundance in nature makes the traditional plant extraction process neither economical nor environmental-friendly.
View Article and Find Full Text PDFContinuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O-sensing probes, and fluorine magnetic resonance imaging methods are limited by their intermittent measurements, requirements for skilled personnel, indirect interfaces, and/or their tethered connections. This paper reports a wireless, miniaturized, minimally invasive near-infrared spectroscopic system designed for uninterrupted monitoring of local-tissue oxygenation.
View Article and Find Full Text PDFBackground: Streptomyces mobaraenesis transglutaminase (smTG) is widely used to generate protein crosslinking or attachment of small molecules. However, the low thermostability is a main obstacle for smTG application. In addition, it is still hard to achieve the secretory expression of active smTG in E.
View Article and Find Full Text PDFSerial examination and direct measurement of intracompartmental pressure (ICP) are suboptimal strategies for the detection of acute compartment syndrome (CS) because they are operator-dependent and yield information that only indirectly reflects intracompartmental muscle perfusion. As a result, instances of unnecessary fasciotomy and unrecognized CS are relatively common. Recently, near-infrared spectroscopy (NIRS)-based systems for compartment monitoring have generated interest as an adjunct tool.
View Article and Find Full Text PDFVascular pedicle thrombosis after free flap transfer or solid organ transplantation surgeries can lead to flap necrosis, organ loss requiring re-transplantation, or even death. Although implantable flow sensors can provide early warning of malperfusion and facilitate operative salvage, measurements performed with existing technologies often depend on extrinsic conditions such as mounting methods and environmental fluctuations. Furthermore, the mechanisms for fixing such probes to vascular or skeletal structures may disrupt the normal blood flow or cause unnecessary tissue damage.
View Article and Find Full Text PDFMicrofluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation.
View Article and Find Full Text PDF