The light-driven splitting of water to oxygen (O) is catalyzed by a protein-bound tetra-manganese penta-oxygen calcium (MnOCa) cluster in Photosystem II. In the current study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to perform two-dimensional imaging of light-induced O evolution from spinach leaves. The employed Bio-LSI chip consists of 400 sensor electrodes with a pitch of 250 μm for fast electrochemical imaging.
View Article and Find Full Text PDFBackground: The growth and development of plants is deleteriously affected by various biotic and abiotic stress factors. Wounding in plants is caused by exposure to environmental stress, mechanical stress, and via herbivory. Typically, oxidative burst in response to wounding is associated with the formation of reactive oxygen species, such as the superoxide anion radical (O), hydrogen peroxide (HO) and singlet oxygen; however, few experimental studies have provided direct evidence of their detection in plants.
View Article and Find Full Text PDFAll living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess.
View Article and Find Full Text PDF