Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue.
View Article and Find Full Text PDFProteome analyses of human induced pluripotent stem cells (iPSC) were carried out on a liquid chromatography-tandem mass spectrometry system using meter-scale monolithic silica-C18 capillary columns without prefractionation. Tryptic peptides from five different iPSC lysates and three different fibroblast lysates (4 μg each) were directly injected onto a 200 cm long, 100 μm i.d.
View Article and Find Full Text PDFCell-based therapies are promising strategies for myocardial repair following myocardial infarction. Induced pluripotent stem (iPS) cells have the potential to generate many cardiomyocytes, and they hold significant promise for the application of regenerative medicine to heart failure. Here, we developed cardiac tissue sheets, termed bioengineered myocardium (BM), from mouse iPS cells and measured cardiac performance following BM implantation in a rat chronic myocardial infarction model.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2013
The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed.
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is a highly lethal malignant tumor arising from the biliary tract epithelium. Interleukin-6 (IL-6) is a major mediator of inflammation and contributor to carcinogenesis within the biliary tree. Previous studies suggested that enforced IL-6 contributes to cholangiocarcinogenesis through hypermethylation of several genes implicated in CCA.
View Article and Find Full Text PDFThermally activated, untethered microgrippers can reach narrow conduits in the body and be used to excise tissue for diagnostic analyses. As depicted in the figure, the feasibility of an in vivo biopsy of the porcine bile duct using untethered microgrippers is demonstrated.
View Article and Find Full Text PDFSince early intervention using corticosteroids improves prognosis in some patients with cardiac sarcoidosis, early and accurate diagnosis of this clinical condition is important. However, it is still not easy to evaluate the activity of cardiac sarcoidosis in clinical practice. The aim of this study was to determine whether high-sensitive cardiac troponin T (hscTnT) is useful as an additional parameter to standard assessment in patients with cardiac sarcoidosis.
View Article and Find Full Text PDFFull geometry optimizations of several inorganic model clusters, CaMn(4)O(4)XYZ(H(2)O)(2) (X, Y, Z = H(2)O, OH(-) or O(2-)), by the use of the B3LYP hybrid density functional theory (DFT) have been performed to illuminate plausible molecular structures of the catalytic site for water oxidation in the S(0), S(1), S(2) and S(3) states of the Kok cycle for the oxygen-evolving complex (OEC) of photosystem II (PSII). Optimized geometries obtained by the energy gradient method have revealed the degree of symmetry breaking of the unstable three-center Mn(a)-X-Mn(d) bond in CaMn(4)O(4)XYZ(H(2)O)(2). The right-elongated (R) Mn(a)-X···Mn(d) and left-elongated (L) Mn(a)···X-Mn(d) structures appear to occupy local minima on a double-well potential for several key intermediates in these states.
View Article and Find Full Text PDFHyperphosphatemia is the most common complication among patients with chronic kidney disease. Large scale observational studies have identified hyperphosphatemia as an independent risk factor for cardiovascular disease and mortality in hemodialysis patients. The combination therapy of dietary phosphate restriction and phosphate removal with dialysis treatment is still not enough to achieve the serum phosphate within the target.
View Article and Find Full Text PDFTernary compounds Mg(Mg(1-x)Al(x))Si (0.3 < x < 0.8) have been prepared under high pressure and high temperature conditions of 5 GPa at 800-1100 °C.
View Article and Find Full Text PDFIn pluripotent stem cells (PSCs), there are 2 types: naive and primed. Only the naive type has the capacity for producing chimeric offspring. Mouse PSCs are naive, but human PSCs are in the primed state.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43).
View Article and Find Full Text PDFA myxobacterial strain, designated SYR-2(T), was obtained from a mud sample from an estuarine marsh alongside the Yoshino River, Shikoku, Japan. It had rod-shaped vegetative cells and formed bacteriolytic enlarging colonies or so-called 'swarms' in the agar media. Fruiting-body-like globular to polyhedral cell aggregates and myxospore-like spherical to ellipsoidal cells within them were observed.
View Article and Find Full Text PDFHepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, the in vitro directed differentiation of human pluripotent stem cells into mature hepatocytes remains challenging. Little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation.
View Article and Find Full Text PDFMicroRNA (miRs) have emerged as salient regulators in cancer homeostasis and, recently, as putative therapeutics. Cholangiocarcinomas (CCA) are aggressive cancers with survival usually measured in months. mRNA arrays followed by pathway analysis revealed that miR-494 is a major modulator of the cell cycle progression from gap 2 (G₂) to mitosis (M).
View Article and Find Full Text PDFFemale human induced pluripotent stem cell (hiPSC) lines exhibit variability in X-inactivation status. The majority of hiPSC lines maintain one transcriptionally active X (Xa) and one inactive X (Xi) chromosome from donor cells. However, at low frequency, hiPSC lines with two Xas are produced, suggesting that epigenetic alterations of the Xi occur sporadically during reprogramming.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
The nature of chemical bonds of ruthenium(Ru)-quinine(Q) complexes, mononuclear [Ru(trpy)(3,5-t-Bu(2)Q)(OH(2))](ClO(4))(2) (trpy = 2,2':6',2''-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear [Ru(2)(btpyan)(3,6-di-Bu(2)Q)(2)(OH(2))](2+) (btpyan = 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene, 3,6-t-Bu(2)Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)-Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction.
View Article and Find Full Text PDFBackground: Due to hybridization events in evolution, studying two different genes of a set of species may yield two related but different phylogenetic trees for the set of species. In this case, we want to combine the two phylogenetic trees into a hybridization network with the fewest hybridization events. This leads to three computational problems, namely, the problem of computing the minimum size of a hybridization network, the problem of constructing one minimum hybridization network, and the problem of enumerating a representative set of minimum hybridization networks.
View Article and Find Full Text PDFInt J Nephrol Renovasc Dis
October 2012
Hyperphosphatemia has been shown to be involved not only in the onset and progression of secondary hyperparathyroidism but also in vascular calcification. In addition, it influences the clinical course of patients with chronic kidney disease. Phosphate (Pi) binder is required in the management of hyperparaphosphatemia, because dietary Pi restriction and Pi removal by hemodialysis alone are insufficient.
View Article and Find Full Text PDFChronic infantile neurologic cutaneous and articular (CINCA) syndrome is an IL-1-driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here we report the generation of NLRP3-mutant and nonmutant-induced pluripotent stem cell (iPSC) lines from 2 CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs).
View Article and Find Full Text PDF