Antimony (Sb) is a recognized priority pollutant with toxicity that is influenced by its migration and transformation processes. Oxidation of Fe(II) to Fe(III) oxides, which is a common phenomenon in the environment, is often accompanied by the formation of Mn(III/IV) and might affect the fate of Sb. In this study, incorporated Mn(III) and sorbed/precipitated Mn(III/IV) associated with lepidocrocite were prepared by adding Mn(II) during and after Fe(II) oxidation, respectively, and the effects of these Mn species on Sb fate were investigated.
View Article and Find Full Text PDFVegetable field is one of the main sources of soil nitrous oxide (NO) emission, yet soil NO emission from vegetable rotation with combined application of fermented organic fertilizer with inorganic fertilizer in polyhouse is not well evaluated. In this study, we investigated the soil NO emission in cabbage-tomato rotation management system under different treatments of fertilizer nitrogen (N) sources, including: 100% inorganic fertilizer (IF), 75% IF+25% fermented organic fertilizer (OF), 50% IF+50% OF, 75% IF+25% OF, 100% OF, and no fertilizer (CK). The fertilization amount of N was 180 kg ha to cabbage and 200 kg ha to tomato.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2021
As one of the low-impact development measures, bioretention plays an important role in reducing the runoff peak flow and minimizing runoff pollutants, such as heavy metals, suspended solids, and nutrients. However, the efficiency of nitrogen removal in the bioretention system is unstable, owing to the different chemical properties of various forms of nitrogen and the limitations of current bioretention system for nitrogen transformation. This review article summarizes the recent advances in bioretention system in treatment of urban stormwater and agricultural runoff for nitrogen removal.
View Article and Find Full Text PDFCrit Rev Biotechnol
December 2020
Nitrate pollution in water environments is a ubiquitous problem. Solid-phase denitrification (SPD) is a technology that has attracted in recent years increasing attention due to its significant advantage suitability over the aqueous-based denitrification for water remediation. This paper provides a view of new aspects of the application of SPD for water remediation.
View Article and Find Full Text PDF