IEEE Trans Neural Syst Rehabil Eng
March 2012
An important determinant of the value of quantitative neuroimaging studies is the reliability of the derived information, which is a function of the data collection conditions. Near infrared spectroscopy (NIRS) and electroencelphalography are independent sensing domains that are well suited to explore principal elements of the brain's response to neuroactivation, and whose integration supports development of compact, even wearable, systems suitable for use in open environments. In an effort to maximize the translatability and utility of such resources, we have established an experimental laboratory testbed that supports measures and analysis of simulated macroscopic bioelectric and hemodynamic responses of the brain.
View Article and Find Full Text PDFThe premise of this report is that functional Near Infrared Spectroscopy (fNIRS) imaging data contain valuable physiological information that can be extracted by using analysis techniques that simultaneously consider the components of the measured hemodynamic response [i.e., levels of oxygenated, deoxygenated and total hemoglobin (oxyHb, deoxyHb and totalHb, respectively)].
View Article and Find Full Text PDFWe describe a two-frequency diffuse optical tomographic (DOT) imaging and EEG recording system suitable for the study of real-time hemodynamic and neural activities in freely moving rats. The system uses a bundle of 16 optical fibers that both deliver light and capture its reemission. This bundle runs in parallel with a cable carrying EEG signals from 16 microelectrodes.
View Article and Find Full Text PDFWe present the fourth in a series of studies devoted to the issue of improving image quality in diffuse optical tomography (DOT) by using a spatial deconvolution operation that seeks to compensate for the information-blurring property of first-order perturbation algorithms. Our earlier reports consider only static target media. Here we report spatial deconvolution applied to media with time-varying optical properties, as a model of tissue dynamics resulting from varying metabolic demand and modulation of the vascular bed.
View Article and Find Full Text PDFDynamic near-infrared optical tomographic measurement instrumentation capable of simultaneous bilateral breast imaging, having a capability of four source wavelengths and 32 source-detector fibers for each breast, is described. The system records dynamic optical data simultaneously from both breasts, while verifying proper optical fiber contact with the tissue through implementation of automatic schemes for evaluating data integrity. Factors influencing system complexity and performance are discussed, and experimental measurements are provided to demonstrate the repeatability of the instrumentation.
View Article and Find Full Text PDFSystematic characterization studies are presented, relating to a previously reported spatial deconvolution operation that seeks to compensate for the information-blurring property of first-order perturbation algorithms for diffuse optical tomography (DOT) image reconstruction. In simulation results that are presented, this deconvolution operation has been applied to two-dimensional DOT images reconstructed by solving a first-order perturbation equation. Under study was the effect on algorithm performance of control parameters in the measurement (number and spatial distribution of sources and detectors, presence of noise, and presence of systematic error), target (medium shape; and number, location, size, and contrast of inclusions), and computational (number of finite-element-method mesh nodes, length of filter-generating linear system, among others) parameter spaces associated with computation and the use of the deconvolution operators.
View Article and Find Full Text PDFA straightforward spatial deconvolution operation is presented that seeks to invert the information-blurring property of first-order perturbation algorithms for diffuse optical tomography (DOT) image reconstruction. The method that was developed to generate these deconvolving operators, or filters, was conceptually based on the frequency-encoding process used in magnetic resonance imaging. The computation of an image-correcting filter involves the solution of a large system of linear equations, in which known true distributions and the corresponding recovered distributions are compared.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2002
The utility of optical tomography as a practical imaging modality has, thus far, been limited by its intrinsically low spatial resolution and quantitative accuracy. Recently, we have argued that a broad range of physiological phenomena might be accurately studied by adopting this technology to investigate dynamic states (Schmitz et al., 2000; Barbour et al.
View Article and Find Full Text PDF