Publications by authors named "Yali Ci"

Article Synopsis
  • Flavivirus replication relies on the NS1 protein, which remodels the endoplasmic reticulum (ER) to form replication compartments necessary for the virus.
  • The study shows that the glycosylation of NS1 is crucial for its role in ER remodeling and that mutations or treatments affecting this process can hinder viral replication.
  • Understanding the importance of NS1 glycosylation opens up potential new strategies for fighting flavivirus infections.
View Article and Find Full Text PDF

Flavivirus remodels the host endoplasmic reticulum (ER) to generate replication compartments (RCs) as the fundamental structures to accommodate viral replication. Here, a centralized replication mode of flavivirus is reported, i.e.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused millions of deaths and remains a major public health burden worldwide. Previous studies found that a large number of COVID-19 patients and survivors developed neurological symptoms and might be at high risk of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). We aimed to explore the shared pathways between COVID-19, AD, and PD by using bioinformatic analysis to reveal potential mechanisms, which may explain the neurological symptoms and degeneration of brain that occur in COVID-19 patients, and to provide early intervention.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) is a highly complicated and dynamic organelle that actively changes its shape and communicates with other organelles. Visualization of ER in live cells is of great importance to understand cellular activities. Here, we designed a novel ER marker, RR-mNeonGreen, which comprised an N-terminal ER retention signal, a bright fluorescent protein (mNeonGreen), and a C-terminal transmembrane region.

View Article and Find Full Text PDF

Flaviviruses have posed a serious threat to human health in the past decades, and effective therapeutic drugs are lacking; thus, treatment of flavivirus infection is a great challenge. The flavivirus protease NS2B3 is an attractive target for antiviral drug screening. Here, we developed an intracellular Zika virus (ZIKV) NS2AB3 self-cleavage assay to identify inhibitors that interfere with viral polyprotein cleavage and block ZIKV/dengue virus (DENV) replication.

View Article and Find Full Text PDF

COVID-19, caused by SARS-CoV-2, has been spreading worldwide for more than two years and has led to immense challenges to human health. Despite the great efforts that have been made, our understanding of SARS-CoV-2 is still limited. The viral helicase, NSP13 is an important enzyme involved in SARS-CoV-2 replication and transcription.

View Article and Find Full Text PDF

Flavivirus replication occurs in membranous replication compartments, also known as replication organelles (ROs) derived from the host ER membrane. Our previous study showed that the non-structural (NS) protein 1 (NS1) is the essential factor for RO creation by hydrophobic insertion into the ER membrane. Here, we found that the association of NS1 with the membrane can be facilitated by the electrostatic interaction between NS1 and negatively charged lipids.

View Article and Find Full Text PDF

Flaviviruses are positive-sense single-stranded RNA viruses that pose a considerable threat to human health. Flaviviruses replicate in compartmentalized replication organelles derived from the host endoplasmic reticulum (ER). The characteristic architecture of flavivirus replication organelles includes invaginated vesicle packets and convoluted membrane structures.

View Article and Find Full Text PDF

Zika virus (ZIKV), a recently emerged member of the flavivirus family, forms replication compartments at the ER during its lifecycle. The proteins that are responsible for the biogenesis of replication compartments are not well defined. Here, we show that Zika nonstructural protein 1 (NS1)-induced ER remodeling is essential for viral replication.

View Article and Find Full Text PDF

Zika virus is a positive single-strand RNA virus whose replication involved RNA unwinding and synthesis. ZIKV NS3 contains a helicase domain, but its enzymatic activity is not fully characterized. Here, we established a dsRNA unwinding assay based on the FRET effect to study the helicase activity of ZIKV NS3, which provided kinetic information in real time.

View Article and Find Full Text PDF

Viral fusion proteins are essential for enveloped virus infection. These proteins mediate fusion between the virus envelope and host cellular membrane to release the viral genome into cells. Vesicular stomatitis virus G (VSV G) protein is a typical type III viral fusion protein.

View Article and Find Full Text PDF

Glutaminolysis is important for metabolism and biosynthesis of cancer cells, and GLS is essential in the process. Selenite is widely regarded as a chemopreventive agent against cancer risk. Emerging evidence suggests that it also has chemotherapeutic potential in various cancer types, but the mechanism remains elusive.

View Article and Find Full Text PDF

In the present study, we aimed to investigate the relationship between autophagy and apoptosis in selenite‑treated colorectal cancer (CRC) cells. The effects of selenite on HCT116 and SW480 cell apoptosis were investigated with an Annexin V/propidium iodide (PI) double staining kit by flow cytometry. The punctate of LC3 protein following treatment with selenite was observed by a laser scanning confocal microscope and by transmission electron microscopy.

View Article and Find Full Text PDF

Supranutritional selenite has anti-cancer therapeutic effects in vivo; however, the detailed mechanisms underlying these effects are not clearly understood. Further studies would broaden our understanding of the anti-cancer effects of this compound and provide a theoretical basis for its clinical application. In this study, we primarily found that selenite exposure inhibited phosphorylation of cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB), leading to suppression of Bcl-2 in HCT116 and SW480 colorectal cancer (CRC) cells.

View Article and Find Full Text PDF

Objective: To construct an eukaryotic expression plasmid of human TNF receptor-associated factor 3 in teracting protein 3(TRAF3IP3) gene and identify its expression in HEK293 cells.

Methods: Human TRAF3IP3 cDNA was amplified by RT-PCR from bone marrow mononuclear cells. After digested by restriction enzymes XhoI and SalI, the complete open reading frame of TRAF3IP3 gene was inserted into pIRES2-EGFP eukaryotic expression vector with a Flag tag at the N-terminus.

View Article and Find Full Text PDF