Defect engineering in SrTiO crystals plays a pivotal role in achieving efficient overall solar water splitting, as evidenced by the influence of Al ions. However, the uneven structural relaxation caused by Al ions has been overlooked, significantly affecting the defect state and catalytic activity. When an AlO crucible is used, optimizing this defect engineering presents a significant challenge.
View Article and Find Full Text PDFThe progress of solar-driven water-splitting technology has been impeded by the limited light response capability of semiconductor materials. Despite attempts to leverage nearly 50% of infrared radiation for photothermal synergy and catalytic reaction enhancement, heat loss during liquid phase reactions results in low energy conversion efficiency. Here, the photothermally driven catalytic water-splitting system, which designs K-SrTiO -loaded TiN silica wool at the water-air interface.
View Article and Find Full Text PDFMnO/C materials with a long lifetime and high rate performance via a biomass template strategy for the lithium ion battery (LIB) market are indispensable. Therefore, novel and efficient ways for their synthesis are urgently required to greatly alleviate the pressure of consuming nonrenewable resources. Herein, we fabricate an open hollow tubular MnO/C hybrid based on the transformation of a natural kapok fiber by hydrothermal and thermal treatment.
View Article and Find Full Text PDF