Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure.
View Article and Find Full Text PDFDiabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM). However, the mechanisms underlying DCM-induced cardiac injury remain unclear. Recently, the role of cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling and pyroptosis in DCM has been investigated.
View Article and Find Full Text PDFDoxorubicin (DOX) chemotherapy in cancer patients increases the risk of the occurrence of cardiac dysfunction and even results in congestive heart failure. Despite the great progress of pathology in DOX-induced cardiomyopathy, the underlying molecular mechanisms remain elusive. Here, we investigate the protective effects and the underlying mechanisms of melatonin in DOX-induced cardiomyopathy.
View Article and Find Full Text PDFSepsis-induced cardiac dysfunction is a leading cause of mortality in intensive care units. However, the molecular mechanisms underlying septic cardiomyopathy remain elusive. Irisin is a cleaved product of fibronectin type III domain-containing protein 5 (FNDC5) that protects the heart from ischemia/reperfusion injury through upregulation of mitochondrial ubiquitin ligase (MITOL).
View Article and Find Full Text PDFThe incidence of type 2 diabetes mellitus (T2DM) has been increasing globally, and T2DM patients are at an increased risk of major cardiac events such as myocardial infarction (MI). Nevertheless, the molecular mechanisms underlying MI injury in T2DM remain elusive. Ubiquitin-specific protease 10 (USP10) functions as a NICD1 (Notch1 receptor) deubiquitinase that fine-tunes the essential myocardial fibrosis regulator Notch signaling.
View Article and Find Full Text PDFVarious changes in the liver during aging can reduce hepatic function and promote liver injury. Aging is associated with high morbidity and a poor prognosis in patients with various liver diseases, including nonalcoholic fatty liver disease, hepatitis C and liver cancer, as well as with surgeries such as partial hepatectomy and liver transplantation. In addition, apoptosis increases with liver aging.
View Article and Find Full Text PDF