Nanostructured cell culture substrates featuring nanowire (NW) arrays have been applied to a variety of basic cell lines and rodent neurons to investigate cellular behavior or to stimulate cell responses. However, patient-derived human neurons-a prerequisite for studying e.g.
View Article and Find Full Text PDFImplanted pacemakers are usually bulky and rigid electronics that are constraint by limited battery lifetimes, and need to be installed and repaired via surgeries that risk secondary infection and injury. In this work, a flexible self-powered photoelectric cardiac stimulator is demonstrated based on hydrogenated amorphous Si (a-Si:H) radial p-i-n junctions (RJs), constructed upon standing Si nanowires grown directly on aluminum thin foils. The flexible RJ stimulators, with an open-circuit voltage of 0.
View Article and Find Full Text PDFThe actual light absorption photovoltaic responses realized in three-dimensional (3D) radial junction (RJ) units can be rather different from their planar counterparts and remain largely unexplored. We here adopt a laser excitation photoelectric microscope (LEPM) technology to probe the local light harvesting and photoelectric signals of 3D hydrogenated amorphous silicon (a-Si:H) RJ thin film solar cells constructed over a Si nanowire (SiNW) matrix, with a high spatial resolution of 600 nm thanks to the use of a high numerical aperture objective. The LEPM scan can help to resolve clearly the impacts of local structural damages, which are invisible to optical and SEM observations.
View Article and Find Full Text PDF