Publications by authors named "Yakshin A"

The microstructure of the PbZrTiO (PZT) films is known to influence the ferroelectric properties, but so far mainly the effect of the deposition conditions of the PZT has been investigated. To our knowledge, the influence of the underlying electrode layer and the mechanisms leading to changes in the PZT microstructure have not been explored. Using LaNiO (LNO) as the bottom electrode material, we investigated the evolution of the PZT microstructure and ferroelectric properties for changing LNO pulsed-laser deposition conditions.

View Article and Find Full Text PDF

Extreme ultraviolet and soft x-ray wavelengths have ever-increasing applications in photolithography, imaging, and spectroscopy. Adaptive schemes for wavefront correction at such a short wavelength range have recently gained much attention. In this Letter we report, to the best of our knowledge, the first demonstration of a functional actuator based on piezoelectric thin films.

View Article and Find Full Text PDF

High resolution imaging systems for EUV range are based on multilayer optics. Current generation of EUV lithography uses broadband Sn LPP sources, which requires broadband mirrors to fully utilize the source power. On the other hand, there always remains a possibility to use FEL or synchrotron as EUV source.

View Article and Find Full Text PDF

We studied a possibility of fabricating LaN/B grazing incidence multilayer mirrors for 6. nm radiation at a relatively large angle of incidence (AOI = 77° off-normal). LaN/B multilayers with a periodicity of 15 nm were successfully fabricated.

View Article and Find Full Text PDF

Lanthanum and lanthanum nitride thin films were deposited by magnetron sputtering onto silicon wafers covered by natural oxide. and real-time synchrotron radiation experiments during deposition reveal that lanthanum crystallizes in the face-centred cubic bulk phase. Lanthanum nitride, however, does not form the expected NaCl structure but crystallizes in the theoretically predicted metastable wurtzite and zincblende phases, whereas post-growth nitridation results in zincblende LaN.

View Article and Find Full Text PDF

We report a hybrid thin-film deposition procedure to significantly enhance the reflectivity of La/B-based multilayer structures. This is of relevance for applications of multilayer optics at 6.7-nm wavelength and beyond.

View Article and Find Full Text PDF

Wideband multilayers designed for various applications in hard X-ray to Extreme UV spectral regions are based on a layered system with layer thicknesses varying largely in depth. However, because the internal structure of a thin film depends on its thickness, this will result in multilayers in which material properties such as density, crystallinity, dielectric constant and effective thickness vary from layer to layer. This variation causes the fabricated multilayers to deviate from the model and negatively influences the reflectivity of the multilayers.

View Article and Find Full Text PDF

We present theoretically derived design rules for an absorbing resonance antireflection coating for the spectral range of 100 - 400 nm, applied here on top of a molybdenum-silicon multilayer mirror (Mo/Si MLM) as commonly used in extreme ultraviolet lithography. The design rules for optimal suppression are found to be strongly dependent on the thickness and optical constants of the coating. For wavelengths below λ ∼ 230 nm, absorbing thin films can be used to generate an additional phase shift and complement the propagational phase shift, enabling full suppression already with film thicknesses far below the quarter-wave limit.

View Article and Find Full Text PDF

We report on the development of a hybrid mirror realized by integrating an EUV-reflecting multilayer coating with a lamellar grating substrate. This hybrid mirror acts as an efficient Bragg reflector for extreme ultraviolet (EUV) radiation at a given wavelength while simultaneously providing spectral-selective suppression of the specular reflectance for unwanted longer-wavelength radiation due to the grating phase-shift resonance. The test structures, designed to suppress infrared (IR) radiation, were fabricated by masked deposition of a Si grating substrate followed by coating of the grating with a Mo/Si multilayer.

View Article and Find Full Text PDF

We studied the structure and optical properties of B(4)C/Mo/Y/Si multilayer systems. Using extended x-ray absorption fine structure measurements at the Y and Mo K-edge, the structure of the subnanometer thick Y layer and the underlying Mo layer were analyzed. It was found that even a 0.

View Article and Find Full Text PDF

An extreme ultraviolet multilayer mirror with an integrated spectral filter for the IR range is presented and experimentally evaluated. The system consists of an IR-transparent B4C/Si multilayer stack which is used both as EUV-reflective coating and as a phase shift layer of the resonant IR antireflective (AR) coating. The AR coating is optimized in our particular case to suppress CO2 laser radiation at a wavelength of 10.

View Article and Find Full Text PDF

We have developed a multilayer mirror for extreme UV (EUV) radiation (13.5 nm), which has near-zero reflectance for IR line radiation (10.6 μm).

View Article and Find Full Text PDF

The optical properties of a-periodic, depth-graded multilayer mirrors operating at 13.5 nm wavelength are investigated using different compositions and designs to provide a constant reflectivity over an essentially wider angular range than periodic multilayers. A reflectivity of up to about 60% is achieved in these calculation in the [0, 18 degrees] range of the angle of incidence for the structures without roughness.

View Article and Find Full Text PDF

The growth behavior of B(4)C interlayers deposited at the interfaces of Mo/Si multilayers was investigated using x-ray photoemission spectroscopy, x-ray reflectivity, and x-ray diffraction measurements. We report an asymmetry in the formation of B(4)C at the B(4)C-on-Mo interface compared to the B(4)C-on-Si interface. X-ray photoelectron spectroscopy (XPS) depth profiling shows that for B(4)C-on-Mo the formed stoichiometry is close to expectation (4:1 ratio), while for B(4)C-on-Si it is observed that carbon diffuses from the B(4)C interfaces into the multilayer, resulting in nonstochiometric growth (>4:1).

View Article and Find Full Text PDF

We demonstrate, both theoretically and experimentally, that special spectral-purity-enhancing multilayer mirror systems can be designed and fabricated to substantially reduce the level of out-of-band radiation expected in an extreme ultraviolet lithographic tool. A first proof of principle of applying such spectral-purity-enhancement layers showed reduced out-of-band reflectance by a factor of five, while the in-band reflectance is only 4.5% (absolute) less than for a standard capped multilayer.

View Article and Find Full Text PDF

Using X-ray diffractometry and spectral measurements, the structure and properties of graded X-ray optical elements have been examined. Experimental and theoretical data on X-ray supermirrors, which were prepared by the magnetron sputtering technique using precise thickness control, are reported. Measurements on graded aperiodic Si(1-x)Ge(x) single crystals, which were grown by the Czochralski technique, are also presented.

View Article and Find Full Text PDF