Publications by authors named "Yakov Koen"

The hepatotoxicity of acetaminophen (APAP) is generally attributed to the formation of a reactive quinoneimine metabolite (NAPQI) that depletes glutathione and covalently binds to hepatocellular proteins. To explore the importance of the N-acyl group in APAP metabolism and toxicity, we synthesized 12 acyl side chain homologues of acetaminophen (APAP) and its 3'-regioisomer (AMAP), including the respective N-(4-pentynoyl) analogues PYPAP and PYMAP. Rat hepatocytes converted APAP, AMAP, PYPAP, and PYMAP extensively to O-glucuronide and O-sulfate conjugates in varying proportions, whereas glutathione or cysteine conjugates were observed only for APAP and PYPAP.

View Article and Find Full Text PDF

The formation of drug-protein adducts via metabolic activation and covalent binding may stimulate an immune response or may result in direct cell toxicity. Protein covalent binding is a potentially pivotal step in the development of idiosyncratic adverse drug reactions (IADRs). Trimethoprim (TMP)-sulfamethoxazole (SMX) is a combination antibiotic that commonly causes IADRs.

View Article and Find Full Text PDF

Isoniazid (INH) has been a first-line drug for the treatment of tuberculosis for more than 40 years. INH is well-tolerated by most patients, but some patients develop hepatitis that can be severe in rare cases or after overdose. The mechanisms underlying the hepatotoxicity of INH are not known, but covalent binding of reactive metabolites is known to occur in animals and is suspected in human cases.

View Article and Find Full Text PDF

Many low molecular weight compounds undergo biotransformation to chemically reactive metabolites (CRMs) that covalently modify cellular proteins. However, the mechanisms by which this covalent binding leads to cytotoxicity are not understood. Prior analyses of lists of target proteins sorted by functional categories or hit frequency have not proven informative.

View Article and Find Full Text PDF

Thioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2.

View Article and Find Full Text PDF

The hepatotoxicity of thioacetamide (TA) has been known since 1948. In rats, single doses cause centrolobular necrosis accompanied by increases in plasma transaminases and bilirubin. To elicit these effects, TA requires oxidative bioactivation, leading first to its S-oxide (TASO) and then to its chemically reactive S,S-dioxide (TASO(2)), which ultimately modifies amine-lipids and proteins.

View Article and Find Full Text PDF

The hepatotoxicity of bromobenzene (BB) is directly related to the covalent binding of both initially formed epoxide and secondary quinone metabolites to at least 45 different liver proteins. 4-Bromophenol (4BP) is a significant BB metabolite and a precursor to reactive quinone metabolites; yet, when administered exogenously, it has negligible hepatotoxicity as compared to BB. The protein adducts of 4BP were thus labeled as nontoxic [Monks, T.

View Article and Find Full Text PDF

Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO(2)).

View Article and Find Full Text PDF

Tienilic acid (TA) is a uricosuric diuretic that was withdrawn from the market only months after its introduction because of reports of serious incidents of drug-induced liver injury including some fatalities. Its hepatotoxicity is considered to be primarily immunoallergic in nature. Like other thiophene compounds, TA undergoes biotransformation to a S-oxide metabolite which then reacts covalently with cellular proteins.

View Article and Find Full Text PDF

Background: Protein covalent binding by reactive metabolites of drugs, chemicals and natural products can lead to acute cytotoxicity. Recent rapid progress in reactive metabolite target protein identification has shown that adduction is surprisingly selective and inspired the hope that analysis of target proteins might reveal protein factors that differentiate target- vs. non-target proteins and illuminate mechanisms connecting covalent binding to cytotoxicity.

View Article and Find Full Text PDF

The post-translational modification of proteins is a well-known endogenous mechanism for regulating protein function and activity. Cellular proteins are also susceptible to post-translational modification by xenobiotic agents that possess, or whose metabolites possess, significant electrophilic character. Such non-physiological modifications to endogenous proteins are sometimes benign, but in other cases they are strongly associated with, and are presumed to cause, lethal cytotoxic consequences via necrosis and/or apoptosis.

View Article and Find Full Text PDF

Thiobenzamide (TB) is a potent hepatotoxin in rats, causing dose-dependent hyperbilirubinemia, steatosis, and centrolobular necrosis. These effects arise subsequent to and appear to result from the covalent binding of the iminosulfinic acid metabolite of TB to cellular proteins and phosphatidylethanolamine lipids [ Ji et al. ( 2007) Chem.

View Article and Find Full Text PDF

Thiobenzamide (TB) is hepatotoxic in rats causing centrolobular necrosis, steatosis, cholestasis, and hyperbilirubinemia. It serves as a model compound for a number of thiocarbonyl compounds that undergo oxidative bioactivation to chemically reactive metabolites. The hepatotoxicity of TB is strongly dependent on the electronic character of substituents in the meta- and para-positions, with Hammett rho values ranging from -4 to -2.

View Article and Find Full Text PDF

Background: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins.

View Article and Find Full Text PDF

Metabolic activation and protein covalent binding are early and apparently obligatory events in the cytotoxicity of many simple organic chemicals including drugs and natural products. Although much has been learned about the chemistry of reactive metabolite formation and reactivity toward protein nucleophiles, progress in identifying specific protein targets for reactive metabolites of various protoxins has been much slower. We previously reported nine microsomal and three cytosolic proteins as targets for reactive metabolites of bromobenzene in rat liver.

View Article and Find Full Text PDF

The hepatotoxicity of bromobenzene (BB) derives from its reactive metabolites (epoxides and quinones), which arylate cellular proteins. Application of proteomic methods to liver proteins from rats treated with a hepatotoxic dose of [14C]-BB has identified more than 40 target proteins, but no adducted peptides have yet been observed. Because such proteins are known to contain bromophenyl- and bromodihydroxyphenyl derivatives of cysteine, histidine, and lysine, the failure to observe modified peptides has been attributed to the low level of total covalent binding and to the "dilution" effect of multiple metabolites reacting at multiple sites on multiple proteins.

View Article and Find Full Text PDF

The cytotoxicity of many small organic compounds often apparently derives from their metabolic activation and covalent binding to cellular proteins. It is therefore of considerable interest to be able to determine, for a given protoxin, which metabolites modify which proteins at which sites. Our laboratory has identified more than 45 target proteins for bromobenzene metabolites in liver by peptide mass mapping after two-dimensional electrophoresis.

View Article and Find Full Text PDF

We recently attempted to generate an affinity chromatography adsorbent to purify cytochrome P450 4A1 by coupling 11-(1'-imidazolyl)-3,6,9-trioxaundecanoic acid to Toyopearl AF-Amino 650 M resin. Variations in ligand density for several resin batches were quantified by high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy using a novel resin internal standard. The uniquely designed ImQ internal resin standard yields its signature resonance in a transparent region of the analyte spectrum making suppression of the polymer background unnecessary.

View Article and Find Full Text PDF

N(tau)-Aryl-histidine derivatives were synthesized using a modified one-step Cu-catalyzed coupling of aryl halides and N-acetylhistidine methyl ester. The latter is much less reactive than imidazole toward aryl halides. p-Chloroiodobenzene coupled with iodine displacement only, whereas m- and p-bromoiodobenzene both gave mixtures of bromo- and iodophenyl products.

View Article and Find Full Text PDF

The main targets of our investigation were cytochrome P450 isozymes (P450), the key enzymes of the hepatic drug-metabolizing system. Current research approaches to the identification of individual P450 forms include specific P450 inhibitors or substrates, antibody-based identification, and mRNA-based expression profiling. All of these approaches suffer from one common disadvantage-they all are indirect methods.

View Article and Find Full Text PDF

The role of single electron transfer (SET) in P450-catalyzed N-dealkylation reactions has been studied using the probe substrates N-cyclopropyl-N-methylaniline (2a) and N-(1'-methylcyclopropyl)-N-methylaniline (2b). In earlier work, we showed that SET oxidation of 2a by horseadish peroxidase leads exclusively to products arising via fragmentation of the cyclopropane ring [Shaffer, C. L.

View Article and Find Full Text PDF

The hepatotoxicity of bromobenzene is strongly correlated with the covalent binding of chemically reactive metabolites to cellular proteins, but up to now relatively few hepatic protein targets of these reactive metabolites have been identified. To identify additional hepatic protein targets we injected an hepatotoxic dose of [14C]bromobenzene to phenobarbital-pretreated male Sprague-Dawley rats ip. After 4 h, their livers were removed and homogenized, and the homogenates fractionated by differential ultracentrifugation.

View Article and Find Full Text PDF