Self-assembled surfactant structures at the solid/liquid interface have been shown to act as nanoparticulate dispersants and are capable of providing a highly effective, self-healing boundary lubrication layer in aqueous environments. However, in some cases in particular, chemical mechanical planarization (CMP) applications the lubrication imparted by self-assembled surfactant dispersants can be too strong, resulting in undesirably low levels of wear or friction disabling material removal. In the present investigation, the influence of calcium cation (Ca(2+)) addition on dodecyl trimethylammonium bromide (C(12)TAB) mediated lubrication of silica surfaces is examined via normal and lateral atomic force microscopy (AFM/LFM), benchtop polishing experiments and surface adsorption characterization methods.
View Article and Find Full Text PDFAdhesion forces between the calcium oxalate monohydrate (COM, whewellite) crystal and the layer of the epithelial kidney cells have been directly measured under buffer solutions by using atomic force microscope (AFM). Two renal epithelial lines, MDCK (a collecting duct line) and LLC-PK1 (a proximal tubular line), were used. All experiments were conducted in buffer solutions containing additional Ca(2+) and Mg(2+) ions in the various concentrations.
View Article and Find Full Text PDFForce/distance curves for silicon nitride tip/flat silica or alumina coated by a layer of mixed micelles of cationic/anionic surfactant are measured by using AFM. Mixtures of SDS/C(n)TAB (with molecular ratios of 3:1 and 20:1) and C(n)TAB/SDS (with molecular ratio of 85:15) were used for alumina and silica substrates, respectively. The number of carbon atoms per C(n)TAB molecule, n, was in the range of 8 to 16.
View Article and Find Full Text PDFAFM interaction force measurements have been performed between calcium oxalate monohydrate crystal (COM) colloidal probes and monolayers of renal epithelial cells (on a polymer substrate) in artificial urine (AU) solutions. The adhesion force was measured for the COM/MDCK cell interaction, while no adhesion force was found for the COM/LLC-PK(1) cell interaction. Long-range repulsive forces for both lines of cells were measured in the range of 2-3 mum.
View Article and Find Full Text PDFCapillary forces are commonly encountered in nature because of the spontaneous condensation of liquid from surrounding vapor, leading to the formation of a liquid bridge. In most cases, the advent of capillary forces by condensation leads to undesirable events such as an increase in the strength of granules, which leads to flow problems and/or caking of powder samples. The prediction and control of the magnitude of capillary forces is necessary for eliminating or minimizing these undesirable events.
View Article and Find Full Text PDFSurfactants are widely used to stabilize colloidal systems in a variety of industrial applications through the formation of self-assembled aggregates at the solid-liquid interface. Previous studies have reported that the control of surfactant-mediated slurry stability can be achieved through the manipulation of surfactant chain length and concentration. However, a fundamental understanding of the mechanical and energetic properties of these aggregates, which may aid in the molecular-level design of these systems, is still lacking.
View Article and Find Full Text PDFThe flow and adhesion behavior of fine powders (approx. less than 10 microm) is significantly affected by the magnitude of attractive interparticle forces. Hence, the relative humidity and magnitude of capillary forces are critical parameters in the processing of these materials.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2001
Direct measurement of surface forces has revealed that silica surfaces seem to have a short-range repulsion that is not accounted for in classical DLVO theory. The two leading hypotheses for the origin of the non-DLVO force are (i) structuring of water at the silica interface or (ii) water penetration into the surface resulting in a gel layer. In this article, the interaction of silica surfaces will be reviewed from the perspective of the non-DLVO force origin.
View Article and Find Full Text PDF