Publications by authors named "Yakisich J"

The virus is the smallest known replicative unit, usually in nanometer-range sizes. The most simple and sensitive detection assay involves molecular amplification of nucleic acids. This work shows a novel, straightforward detection based on the interaction of viral particles with fluorescent nanoconstructs without using enzymatic amplification, washing or separation steps.

View Article and Find Full Text PDF

Prolonged low-dose administration (PLDA) of several FDA-approved drugs for noncancer conditions or dietary compounds is associated with a lower incidence of specific types of cancers and with the lower formation of metastasis. However, the underlying mechanism is unknown; there is a discrepancy between the concentration of drugs needed to kill cancer cells in vitro and the actual serum levels (10 and >1000 times lower) found in patients. In this study, we evaluated the hypothesis that clonogenicity may be the target of PLDA.

View Article and Find Full Text PDF

Prostate cancer is the second leading cause of death in men. A challenge in treating prostate cancer is overcoming cell plasticity, which links cell phenotype changes and chemoresistance. In this work, a microfluidic device coupled with electrical impedance spectroscopy (EIS), an electrode-based cell characterization technique, was used to study the electrical characteristics of phenotype changes for (1) prostate cancer cell lines (PC3, DU145, and LNCaP cells), (2) cells grown in 2D monolayer and 3D suspension cell culture conditions, and (3) cells in the presence (or absence) of the anti-cancer drug nigericin.

View Article and Find Full Text PDF

Decoration of nanoparticles with specific molecules such as antibodies, peptides, and proteins that preserve their biological properties is essential for the recognition and internalization of their specific target cells. Inefficient preparation of such decorated nanoparticles leads to nonspecific interactions diverting them from their desired target. We report a simple two-step procedure for the preparation of biohybrid nanoparticles containing a core of hydrophobic quantum dots coated with a multilayer of human serum albumin.

View Article and Find Full Text PDF

The classical cancer stem cell (CSCs) theory proposed the existence of a rare but constant subpopulation of CSCs. In this model cancer cells are organized hierarchically and are responsible for tumor resistance and tumor relapse. Thus, eliminating CSCs will eventually lead to cure of cancer.

View Article and Find Full Text PDF

Antibodies are the most used technological tool in histochemistry. However, even with monoclonal antibodies, their standardization is difficult due to variation of biological systems as well as to variability due to the affinity and amplification of the signal arising from secondary peroxidase detection systems. In this article we combined two synthetic molecules to facilitate the standardization of a detection protocol of protein markers in histological sections.

View Article and Find Full Text PDF

Despite the recent announcement of promising drug candidates to treat COVID-19, there is currently no effective antiviral drug or vaccine. There is strong evidence that acute lung injury/acute respiratory distress syndrome (ALI/ARDS), likely triggered by a cytokine storm, is responsible for the severity of disease seen in COVID-19 patients. In support of this hypothesis, pilot studies using IL-6 receptor inhibitors such as tocilizumab have shown promising results.

View Article and Find Full Text PDF

Electrical impedance spectroscopy (EIS) is an electrokinetic method that allows for the characterization of intrinsic dielectric properties of cells. EIS has emerged in the last decade as a promising method for the characterization of cancerous cells, providing information on inductance, capacitance, and impedance of cells. The individual cell behavior can be quantified using its characteristic phase angle, amplitude, and frequency measurements obtained by fitting the input frequency-dependent cellular response to a resistor-capacitor circuit model.

View Article and Find Full Text PDF

Air particulate matter has been associated with adverse effects in the cardiorespiratory system leading to cytotoxic and pro-inflammatory effects. Particulate matter-associated cardiac effects may be direct or indirect. While direct interactions may occur when inhaled ultrafine particles and/or particle components cross the air-blood barrier reaching the cardiac tissue, indirect interactions may occur as the result of pulmonary inflammation and consequently the release of inflammatory and oxidative mediators into the blood circulation.

View Article and Find Full Text PDF

The biguanides metformin (MET) and to a lesser extent buformin (BUF) have recently been shown to exert anticancer effects. In particular, MET targets cancer stem cells (CSCs) in a variety of cancer types but these compounds have not been extensively tested for combination therapy. In this study, we investigated the anticancer activity of MET and BUF alone or in combination with 2-deoxy-D-glucose (2-DG) and WZB-117 (WZB), which are a glycolysis and a GLUT-1 inhibitor, respectively, in H460 human lung cancer cells growing under three different culture conditions with varying degrees of stemness: (1) routine culture conditions (RCCs), (2) floating lung tumorspheres (LTSs) that are enriched for stem-like cancer cells, and (3) adherent cells under prolonged periods (8-12 days) of serum starvation (PPSS).

View Article and Find Full Text PDF

Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse.

View Article and Find Full Text PDF

Three-dimensional (3D) culture systems such as floating spheroids (FSs) and floating tumorspheres (FTs) are widely used as tumor models of chemoresistance. FTs are considered to be enriched in cancer stem-like cells (CS-LCs). In this study, we used cancer cell lines (lung H460, prostate LnCAP, and breast MCF-7) able to form FSs under anchorage-independent conditions and compared with cell lines (prostate PC3 and breast MDA-MB-231) that cannot form FSs under similar conditions.

View Article and Find Full Text PDF

The presence of highly resistant cancer cells and the toxicity to normal cells are key factors that limit chemotherapy. Here, we used two models of highly resistant lung cancer cells: (1) adherent cells growing under prolonged periods of serum starvation (PPSS) and (2) cells growing as floating tumorspheres (FTs) to evaluate the effect of Verapamil (VP) in combination with Sorafenib (SF). Compared to cells growing under routine culture conditions (RCCs), PPPS cells or FTs were highly sensitive to short-term exposure (24 h) to VP 100 M + SF 5 M (VP100 + SF5).

View Article and Find Full Text PDF

Despite the vast amounts of information gathered about gliomas, the overall survival of glioma patients has not improved in the last four decades. This could partially be due to an apparent failure to include basic concepts of glioma biology into clinical trials. Specifically, attempts to overcome the limitations of the blood brain barrier (BBB) and the chemoresistance of glioma stem cells (GSCs) were seldom included (a phenomenon known as the translational gap, TG) in a study involving 29 Phase I/II clinical trials (P2CT) published in 2011.

View Article and Find Full Text PDF

While there are targeted treatments for triple positive breast cancers, lack of specific biomarkers for triple-negative breast cancers (TNBC) has hindered the development of therapies for this subset of cancers. In this study, we evaluated the anticancer properties of cardiac glycoside Digitoxin (Dtx) and its synthetic analog MonoD on breast cancer cell lines MCF-7 (estrogen receptor-positive breast cancer) and MDA-MB-468 (triple-negative breast cancer). Both cardiac glycosides, at concentrations within the therapeutic range, increased the fraction of cells in the G/G phase of the cell cycle, decreased viability, and inhibited the migration of MCF-7 and MDA-MB-468 cells.

View Article and Find Full Text PDF

Multiple factors including tumor heterogeneity and intrinsic or acquired resistance have been associated with drug resistance in lung cancer. Increased stemness and the plasticity of cancer cells have been identified as important mechanisms of resistance; therefore, treatments targeting cancer cells independent of stemness phenotype would be much more effective in treating lung cancer. In this article, we have characterized the anticancer effects of the antibiotic Nigericin in cells displaying varying degrees of stemness and resistance to anticancer drugs, arising from (1) routine culture conditions, (2) prolonged periods of serum starvation.

View Article and Find Full Text PDF

Background: Resveratrol has been shown to have antioxidant and anti-proliferative properties in multiple cancer types. Here we demonstrate that H460 lung cancer cells are more susceptible to resveratrol treatment in comparison to human bronchial epithelial Beas-2B cells. Resveratrol decreases cell viability and proliferation, and induces significant apoptosis in H460 cells.

View Article and Find Full Text PDF

Breast cancer is second most prevalent cancer in women, and the second only to lung cancer in cancer-related deaths. It is a heterogeneous disease and has several subtypes based on the presence or absence of hormone receptors and/or human epidermal growth factor receptor 2 (HER2). Hormone receptor-positive and HER2-enriched cancers can be targeted using hormone and HER2-targeting therapies such as trastuzumab or lapatinib.

View Article and Find Full Text PDF

In cancer cells, the reversible nature of the stemness status in terms of chemoresistance has been poorly characterized. In this study, we have simulated one cycle of environmental conditions to study such reversibility by first generating floating tumorspheres (FTs) from lung and breast cancer cells by culturing them in serum-free media without the addition of any external mitogenic stimulation, and subsequently (after 2 weeks) re-incubating them back in serum-containing media to simulate routine culture conditions (RCCs). We found that cancer cells are extremely plastic: cells grown under RCCs become multidrug-resistant when grown as FTs, but upon re-incubation under RCCs quickly re-attach and lose the acquired resistance.

View Article and Find Full Text PDF

Lung cancer is a leading cause of cancer-related death in the United States. Although several drugs have been developed that target individual biomarkers, their success has been limited due to intrinsic or acquired resistance for the specific targets of such drugs. A more effective approach is to target multiple pathways that dictate cancer progression.

View Article and Find Full Text PDF

Cellular oxidative stress is implicated not only in lung injury but also in contributing to the development of pulmonary fibrosis. We demonstrate that a cell-permeable superoxide dismutase (SOD) mimetic and peroxynitrite scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) significantly inhibited bleomycin-induced fibrogenic effects both in vitro and in vivo. Further investigation into the underlying mechanisms revealed that MnTBAP targets canonical Wnt and non-canonical Wnt/Ca2+ signaling pathways, both of which were upregulated by bleomycin treatment.

View Article and Find Full Text PDF

The efficacy of chemotherapy is hindered by both tumor heterogeneity and acquired or intrinsic multi-drug resistance caused by the contribution of multidrug resistance proteins and stemness-associated prosurvival markers. Therefore, targeting multi-drug resistant cells would be much more effective against cancer. In this study, we characterized the chemoresistance properties of adherent (anchorage-dependent) lung H460 and breast MCF-7 cancer cells growing under prolonged periods of serum starvation (PPSS).

View Article and Find Full Text PDF

Titanium dioxide (TiO) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO nanoparticles (HTiO) on a human keratinocyte cell line (HaCaT).

View Article and Find Full Text PDF

In cattle, cryopreservation of semen and sex-sorting kill up to 50% of spermatozoa and decrease the success of assisted insemination (AI). Therefore, significant efforts are being carried out to improve the quality of semen prior to AI. In this work we used the Cell-SELEX technique to select single strand DNA aptamers able to recognize with high affinity and specificity damaged sperm cells generated by heat-treatment.

View Article and Find Full Text PDF

Breast cancer is the most frequently diagnosed cancer in women, and one of the leading causes of cancer-related deaths worldwide. Recent evidences indicate that dietary agents such as resveratrol may inhibit cancer progression through modulation of microRNAs (miRNAs). We demonstrate that resveratrol regulates apoptotic and cell cycle machinery in breast cancer cells by modulating key tumor-suppressive miRNAs including miR-125b-5p, miR-200c-3p, miR-409-3p, miR-122-5p and miR-542-3p.

View Article and Find Full Text PDF