Publications by authors named "Yakimenko V"

Article Synopsis
  • - Radiation-induced liver disease (RILD) is a serious side effect of radiotherapy used for abdominal cancers, particularly affecting the liver's crucial functions and limiting the overall effectiveness of treatment.
  • - Electron beam therapy has shown promise in targeting tumors with less damage to surrounding healthy tissue, but the long-term effects on liver health and the potential for chronic damage need further research, especially regarding vitamin C's protective qualities.
  • - A study involving male Wistar rats examined the impact of electron beam radiation and vitamin C on liver health, showing that radiation caused weight loss and liver mass reduction, while various biochemical and genetic analyses provided insights into how vitamin C might mitigate some of these adverse effects.
View Article and Find Full Text PDF

Omsk hemorrhagic fever virus (OHFV) is a member of the tick-borne encephalitis virus (TBEV) complex of the family. Currently, there are no data on the cross-reactivity of antibodies to the NS1 proteins of OHFV and TBEV. Such data are of major interest for monitoring viral encephalitis of unknown etiology due to the increasing geographical distribution of OHFV.

View Article and Find Full Text PDF

is an insufficiently studied nidicolous tick species. For the first time, the prevalence and genetic diversity of spp. in , , and ticks from their sympatric habitats in Western Siberia were investigated.

View Article and Find Full Text PDF

Four genospecies from the Borrelia burgdorferi sensu lato complex were detected in Ixodes persulcatus and Ixodes pavlovskyi ticks from Siberia and genetically characterized. The presence of Borrelia spp. in Ixodes apronophorus and Ixodes trianguliceps ticks found in Asia has never been studied.

View Article and Find Full Text PDF

The longitudinal coherence of X-ray free-electron lasers (XFELs) in the self-amplified spontaneous emission regime could be substantially improved if the high brightness electron beam could be pre-bunched on the radiated wavelength-scale. Here, we show that it is indeed possible to realize such current modulated electron beam at angstrom scale by exciting a nonlinear wake across a periodically modulated plasma-density downramp/plasma cathode. The density modulation turns on and off the injection of electrons in the wake while downramp provides a unique longitudinal mapping between the electrons' initial injection positions and their final trapped positions inside the wake.

View Article and Find Full Text PDF
Article Synopsis
  • The spotted fever group in the Rickettsia genus includes newly identified species worldwide, including "Candidatus Rickettsia thierseensis" found in Austria in 2020.
  • Genetic analysis revealed that the sequences of "Candidatus R. thierseensis" closely match those of "Candidatus Rickettsia uralica," originally identified in Russia in 2015.
  • Comparison of genetic loci showed 100% identity in several gene regions and only minor differences in others, suggesting that these two species may actually be the same.
View Article and Find Full Text PDF

Hollow plasma channels are attractive for lepton acceleration because they provide intrinsic emittance preservation regimes. However, beam breakup instabilities dominate the dynamics. Here, we show that thin, warm hollow channels can sustain large-amplitude plasma waves ready for high-quality positron acceleration.

View Article and Find Full Text PDF

According to modern classification, tick-borne flaviviruses have been divided into a mammalian tick-borne virus group and a seabird tick-borne virus group (STBVG). The STBVG includes the Tyuleniy virus, Meaban virus, Saumarez Reef virus, and the recently discovered Kama virus (KAMV). The latter was isolated from Ixodes lividus, an obligate parasitic tick of the sand martin (Riparia riparia), in 1989 in the central part of the Russian Plain.

View Article and Find Full Text PDF

When a femtosecond duration and hundreds of kiloampere peak current electron beam traverses the vacuum and high-density plasma interface, a new process, that we call relativistic transition radiation (RTR), generates an intense ∼100 as pulse containing ∼1 terawatt power of coherent vacuum ultraviolet (VUV) radiation accompanied by several smaller femtosecond duration satellite pulses. This pulse inherits the radial polarization of the incident beam field and has a ring intensity distribution. This RTR is emitted when the beam density is comparable to the plasma density and the spot size much larger than the plasma skin depth.

View Article and Find Full Text PDF

Omsk hemorrhagic fever virus (OHFV) is the etiological agent of Omsk hemorrhagic fever, a disease described in the 1940s in Western Siberia. However, until now, it has been represented in GenBank by just four complete genome sequences, which do not reflect the real genetic diversity of the virus in nature. In this study, we analyzed the molecular variability and genetic structure of OHFV based on 20 complete genome sequences, fifteen of which were obtained for the first time.

View Article and Find Full Text PDF

Metre-scale plasma wakefield accelerators have imparted energy gain approaching 10 gigaelectronvolts to single nano-Coulomb electron bunches. To reach useful average currents, however, the enormous energy density that the driver deposits into the wake must be removed efficiently between shots. Yet mechanisms by which wakes dissipate their energy into surrounding plasma remain poorly understood.

View Article and Find Full Text PDF

A total of 705 rodents from Myodes, Microtus, and Apodemus genera, 396 adult questing Ixodes persulcatus, and 115 Ixodes larvae and nymphs taken from rodents (and then molted under laboratory conditions to nymphs and adults) were collected in 2013-2018 in Omsk province, Russian Siberia, and examined for the presence of Anaplasmataceae. DNA of Anaplasma phagocytophilum was detected in 29.5 % rodents, 3.

View Article and Find Full Text PDF

Wild animals are reservoir hosts for a number of tick-transmitted agents, and long-term persistence of the agents is a key factor for their effective transmission from animal hosts to ticks. To study the persistence of Anaplasmataceae in rodents, 59 adult Myodes spp. voles (M.

View Article and Find Full Text PDF

Wakefield based accelerators capable of accelerating gradients 2 orders of magnitude higher than present accelerators offer a path to compact high energy physics instruments and light sources. However, for high gradient accelerators, beam instabilities driven by commensurately high transverse wakefields limit beam quality. Previously, it has been theoretically shown that transverse wakefields can be reduced by elliptically shaping the transverse sizes of beams in dielectric structures with planar symmetry.

View Article and Find Full Text PDF

An intense, subpicosecond, relativistic electron beam traversing a dielectric-lined waveguide generates very large amplitude electric fields at terahertz (THz) frequencies through the wakefield mechanism. In recent work employing this technique to accelerate charged particles, the generation of high-power, narrow-band THz radiation was demonstrated. The radiated waves contain fields with measured amplitude exceeding 2  GV/m, orders of magnitude greater than those available by other THz generation techniques at a narrow bandwidth.

View Article and Find Full Text PDF

Genetic variability of I. apronophorus from Western Siberia, Russia was examined using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial 16S rRNA and cytochrome c oxidase subunit 1 (cox1) genes and compared to those of Ixodes persulcatus and Ixodes trianguliceps from the same site. The I.

View Article and Find Full Text PDF

Beam-driven plasma wakefield acceleration (PWFA) has demonstrated significant progress during the past two decades of research. The new Facility for Advanced Accelerator Experimental Tests (FACET) II, currently under construction, will provide 10 GeV electron beams with unprecedented parameters for the next generation of PWFA experiments. In the context of the FACET II facility, we present simulation results on expected betatron radiation and its potential application to diagnose emittance preservation and hosing instability in the upcoming PWFA experiments.

View Article and Find Full Text PDF

This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations.

View Article and Find Full Text PDF

We demonstrate the experimental feasibility of probing the fully nonperturbative regime of quantum electrodynamics with a 100 GeV-class particle collider. By using tightly compressed and focused electron beams, beamstrahlung radiation losses can be mitigated, allowing the particles to experience extreme electromagnetic fields. Three-dimensional particle-in-cell simulations confirm the viability of this approach.

View Article and Find Full Text PDF

Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel.

View Article and Find Full Text PDF

High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. In these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch).

View Article and Find Full Text PDF

Kemerovo virus (KEMV), a member of the Reoviridae family, Orbivirus genus, is transmitted by Ixodes ticks and can cause aseptic meningitis and meningoencephalitis. Recently, this virus was observed in certain provinces of European part of Russia, Ural, and Western and Eastern Siberia. However, the occurrence and genetic diversity of KEMV in Western Siberia remain poorly studied.

View Article and Find Full Text PDF

There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration.

View Article and Find Full Text PDF

The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe.

View Article and Find Full Text PDF

Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion.

View Article and Find Full Text PDF