Phys Rev Lett
February 2024
We investigated the high energy spin excitations in electron-doped La_{2-x}Ce_{x}CuO_{4}, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at Q_{∥}=(0.6π,0) and (0.
View Article and Find Full Text PDFHall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate TlBaCuO (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of p ≈ 0.
View Article and Find Full Text PDFWell-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate LaBaCuO across its ordering transition.
View Article and Find Full Text PDFThe magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation.
View Article and Find Full Text PDFA new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques.
View Article and Find Full Text PDFThe spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag.
View Article and Find Full Text PDFOne of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations. Indeed, such excitations have been observed up to optimal doping in the cuprates. In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared, and this has been argued to cause the demise of HTS with overdoping.
View Article and Find Full Text PDFQuantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found.
View Article and Find Full Text PDF