Publications by authors named "Yajun Tong"

Triple-negative breast cancer, a subtype of breast cancer, is characterized by a poor prognosis. Recent studies have shown that miRNA30b acts as an oncogene and is vital for the proliferation of malignancies across various systems. This study aimed to elucidate the impact of miRNA30b on the proliferation, migration, and invasion capabilities of breast cancer cells .

View Article and Find Full Text PDF

High-repetition-rate free-electron lasers impose stringent requirements on thermal deformations of optics in the beamline. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To effectively manage thermal deformation in the first reflection mirrors M1, we optimized the cooling length and position of the cooling groove with numerical calculations.

View Article and Find Full Text PDF

The advent of immune checkpoint inhibitors (ICIs) has greatly improved the prognosis of advanced lung cancer patients, but can lead to pseudoprogression (PsP), which complicates clinical evaluation and management. PsP is manifested as temporary enlargement of the tumour or the appearance of new lesions, etc., and improvement in imaging occurs with continued treatment, mostly without worsening of clinical symptoms.

View Article and Find Full Text PDF

Introduction: Bimetallic nanoparticles, specifically Zinc oxide (ZnO) and Silver (Ag), continue to much outperform other nanoparticles investigated for a variety of biological uses in the field of cancer therapy. This study introduces biosynthesis of bimetallic silver/zinc oxide nanocomposites (Ag@ZnO NCs) using the Crocus sativus extract and evaluates their anti-cancer properties against cervical cancer.

Methods: The process of generating bimetallic nanoparticles (NPs), namely Ag@ZnO NCs, through the utilization of Crocus sativus extract proved to be uncomplicated and eco-friendly.

View Article and Find Full Text PDF

The Shanghai Soft X-ray Free-Electron Laser (SXFEL) is the first X-ray free-electron laser facility in China. The SASE beamline, which consists of a pink-beam branch and a mono-beam branch, is one of the two beamlines in the Phase-I construction. The pink-beam branch opened for users in 2023 after successful first-round beamline commissioning.

View Article and Find Full Text PDF

The characterization of X-ray focal spots is of great significance for the diagnosis and performance optimization of focusing systems. X-ray free-electron lasers (XFELs) are the latest generation of X-ray sources with ultrahigh brilliance, ultrashort pulse duration and nearly full transverse coherence. Because each XFEL pulse is unique and has an ultrahigh peak intensity, it is difficult to characterize its focal spot size individually with full power.

View Article and Find Full Text PDF

Characterizing interactions between microbial cells and their specific inhibitory drugs is essential for developing effective drugs and understanding the therapeutic mechanism. Functional metal nanoclusters can be effective inhibitory agents against microorganisms according to various characterization methods, but quantitative three-dimensional (3D) spatial structural analysis of intact cells is lacking. Herein, using coherent X-ray diffraction imaging, we performed in situ 3D visualization of unstained cells treated with peptide-mineralized Au-cluster probes at a resolution of ∼47 nm.

View Article and Find Full Text PDF

Radiation damage and a low signal-to-noise ratio are the primary factors that limit spatial resolution in coherent diffraction imaging (CDI) of biomaterials using X-ray sources. Introduced here is a clustering algorithm named based on deep learning, and it is applied to obtain accurate and consistent image reconstruction from noisy diffraction patterns of weakly scattering biomaterials. To investigate the impact of X-ray radiation on soft biomaterials, CDI experiments were performed on mitochondria from human embryonic kidney cells using synchrotron radiation.

View Article and Find Full Text PDF

In common ptychographic coherent diffractive imaging (PCDI) systems, the probe-generating devices typically exhibit strong scattering, which is not fully used. Here, we report the reasonableness of using the diffraction pattern of the probe-generating device as the frequency-domain information of the scanning probe located in the sample plane, and we propose a method introducing this frequency-domain information into an iterative process to improve the imaging quality of PCDI. The new method was demonstrated using both a visible laser source and a synchrotron radiation X-ray source; the proposed method significantly improved the imaging quality in both demonstrations.

View Article and Find Full Text PDF
Article Synopsis
  • A new terahertz (THz) imaging method using mean absorption has been proposed to improve image clarity and information extraction.
  • THz imaging is beneficial across various fields due to its low energy and non-ionizing properties, allowing detailed analysis of materials, biology, and food safety.
  • Experimental results indicate that this method can provide clearer images and better representation of sample characteristics compared to traditional THz imaging techniques.
View Article and Find Full Text PDF

Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent).

View Article and Find Full Text PDF

The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted.

View Article and Find Full Text PDF

Objective: To evaluate the efficacy and safety of Pai-Neng-Da Capsule (panaxadiol saponins component, PND), a new Chinese patent medicine, on patients with chronic aplastic anemia (CAA) and to explore the optimal therapeutic regimen for CAA.

Method: A total of 36 patients with CAA were enrolled and divided into three groups: the AP group (20 cases, andriol 120 mg/day + PND 240 mg/day), the ACP group (13 cases, andriol 120 mg/day + cyclosporine 3-6 mg kd(-1) day(-1) + PND 240 mg/day), and the PND group (3 cases, PND 240 mg/day). All patients were treated and followed up for 6 months.

View Article and Find Full Text PDF

Background: Since the three-dimensional (3-D) structure of dermal tissue has an important role in regulating cell behavior and directing the wound healing process, the characteristic of the 3-D structure of dermal tissue needs to be clarified.

Objective: To explore the different 3-D structures between normal and scar dermal tissues.

Material And Methods: Phase-contrast microtomography with synchrotron radiation technology was applied to detect the 3-D structure of dermal tissues.

View Article and Find Full Text PDF

Thorough knowledge of dermal tissue structure in three dimensions is not only a prerequisite for understanding the relationship between cells and their extracellular matrix, but also provides a basis for understanding of wound healing and scar formation for designing the ideal scaffold for skin tissue engineering. Here, we show for the first time the visualization of the three dimensional (3D) structure of dermal tissue by phase-contrast microtomography (μCT) with third-generation synchrotron radiation (SR). Compared with irregular dermal tissue (such as scar tissue), the normal dermal tissues were found to consist of a network of elliptically shaped regions containing a web of fibre bundles.

View Article and Find Full Text PDF

Objective: To compare the morphological difference between dermal tissue of normal skin and that of scar in rat, and to explore its structural pattern.

Methods: The full-thickness skin and the scar tissue formed 3 weeks after wound healing from SD rats were harvested as samples, which were prepared appropriately afterwards. Samples were scanned and imaged with synchrotron radiation technology, micro-CT, and phase-contrast imaging technology.

View Article and Find Full Text PDF