By using a multicarboxylate ligand consisting of six peripheral 1,3-benzenedicarboxylalte units connected to the central cyclotriphosphazene ring through a P-O-C spacer, a novel metal-organic framework, [Cd L(H O) ]⋅2 (CH ) NH ⋅6 DMF (L=hexakis(3,5-dicarboxylatephenyloxy)cyclotriphosphazene), was solvothermally synthesized and characterized by single-crystal and powder XRD, thermal gravimetric analysis, and IR and photoluminescence spectroscopy. Single-crystal XRD analyses show that the framework is an anionic 3D network assembled from pentanuclear [Cd (COO) ] secondary building units and organic linkers. TOPOS software analyses indicate that two alternative simplifications based on the organic linkers can produce five-connected uninodal bnn-type topology or novel (2,3,6,10)-connected five-nodal topology.
View Article and Find Full Text PDFA systematic investigation of CO2 adsorption behavior in three metal-organic frameworks was executed. The three MOFs adopted the same NbO-type structure, except that the organic ligands were grafted with different highly polarized heterocyclic moieties, namely, oxadiazole, thiadiazole, and selenadiazole, respectively. After activation, the three MOF materials, ZJNU-41a showed different surface areas and pore volumes depending on the incorporated heterocyclic rings attached to the organic ligands as well as the MOF's stabilities.
View Article and Find Full Text PDFA new three-dimensional NbO-type porous metal-organic framework ZJNU-47 was synthesized via a solvothermal reaction of Cu(NO3)2·3H2O and a Lewis basic nitrogen donor site-rich tetracarboxylate, namely, 5,5'-(pyridazine-3,6-diyl)-diisophthalate, and the structure was characterized by single-crystal X-ray diffraction to be isostructural with NOTT-101. With the synergistic effect of open metal sites, Lewis basic sites and a suitable pore space, the MOF material ZJNU-47a after activation can take up a large amount of C2H2 and CO2. The gravimetric C2H2 uptake of 214 cm(3) (STP) g(-1) at room temperature and 1 atm is the highest among all reported MOFs to date, and the gravimetric CO2 uptake of 108 cm(3) (STP) g(-1) is also among the highest reported for MOFs.
View Article and Find Full Text PDFA copper-based NbO-type metal-organic framework constructed from a tetracarboxylate incorporating phenylethyne as a spacer exhibited an exceptionally high methane working capacity of 184 cm(3) (STP) cm(-3) for methane storage. The value is among the highest reported for MOF materials.
View Article and Find Full Text PDFA new NbO-type metal-organic framework ZJNU-40 incorporating highly polarized benzothiadiazole moieties exhibits a high CO2 uptake of 108 cm(3) g(-1) at 296 K and 1 atm, as well as good adsorption selectivities of CO2 over CH4 and N2 at room temperature, which is superior to that of the analogous MOF NOTT-101.
View Article and Find Full Text PDF