Publications by authors named "Yajing Lin"

Squamous cell carcinoma (SCC) in situ can occur on any skin or mucus surface and is more commonly found in elderly patients on areas of skin that have been sunburnt. Most previous case reports are from dermatologists, with few published reports from pathologists. In this study, three patients underwent pathological routine and auxiliary immunohistochemical (IHC) examination and were ultimately diagnosed with pagetoid SCC in situ - a different diagnosis from the initial clinical assessment.

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) is a common pathogen contributing to healthcare-associated infections, which can result in multiple sites infections. The epidemiological characteristics of MRSA exhibit variability among distinct regions and healthcare facilities. The aim of this study was to investigate the molecular epidemiology and nosocomial outbreak characteristics of MRSA in a county-level hospital in China.

View Article and Find Full Text PDF

Rhabdomyolysis is a syndrome potentially fatal and has been associated with selective serotonin reuptake inhibitors (SSRIs) treatment in a few case reports. Herein, we purpose to establish the correlation between SSRIs use and rhabdomyolysis using the U.S.

View Article and Find Full Text PDF

Viral myocarditis (VM) is an inflammatory disease of the myocardium associated with heart failure, which is caused by common viral infections. A majority of the infections are initiated by coxsackievirus B3 (CVB3). MicroRNAs (miRNAs) have a major role in various biological processes, including gene expression, cell growth, proliferation, and apoptosis, as well as viral infection and antiviral immune responses.

View Article and Find Full Text PDF

Gastric cancer (GC) is the third leading cause of cancer-related deaths in the world. Tumor metastasis is considered one of the main factors for GC development. Nup62 is a member of the nuclear pore complex (NPC).

View Article and Find Full Text PDF

N6-methyladenosine (mA), one of the most prevalent RNA post-transcriptional modifications, is involved in numerous biological processes. In previous studies, the functions of mA were typically identified by perturbing the activity of the methyltransferase complex. Here, we dissect the contribution of mA to an individual-long noncoding RNA-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1).

View Article and Find Full Text PDF

The accurate modification of the tRNA anticodon wobble cytosine 34 is critical for AUA decoding in protein synthesis. Archaeal tRNA cytosine 34 is modified with agmatine in the presence of ATP by TiaS (tRNA agmatidine synthetase). However, no structure of apo-form full-length TiaS is available currently.

View Article and Find Full Text PDF

Background: Diseases associated with Abelson-related gene (also called ABL2) include leukemia; furthermore, previous researches have studied the expressions and functions of ABL2 in different types of malignancies and found that it plays an important role in almost all kinds of cancers.

Aims: Nevertheless, the mechanism of ABL2 in gastric cancer (GC) remains vague.

Methods: In the present study, the level of ABL2 in human GC tissues was detected by immunohistochemistry.

View Article and Find Full Text PDF

Tetrandrine is an alkaloid extracted from a traditional China medicine plant, and is considered part of food therapy as well. In addition, it has been widely reported to induce apoptotic cell death in many human cancer cells. However, the mechanism of Tetrandrine on human nasopharyngeal carcinoma cells (NPC) is still questioned.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck and the incidence is higher in Southeast Asia. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid, a natural product, and exhibits biological activities including action against many human cancer cell lines. However, the molecular mechanism of TET-induced cell apoptosis in human NPC cells is still unclear.

View Article and Find Full Text PDF

Copper homeostasis integrates multiple processes from sensing to storage and efflux out of the cell. CopM is a cyanobacterial metallochaperone, the gene for which is located upstream of a two-component system for copper resistance, but the molecular basis for copper recognition by this four-helical bundle protein is unknown. Here, crystal structures of CopM in apo, copper-bound and silver-bound forms are reported.

View Article and Find Full Text PDF

Tetrapyrroles, including haem and chlorophyll, play vital roles for various biological processes, such as respiration and photosynthesis, and their biosynthesis is critical for virtually all organisms. In photosynthetic organisms, magnesium chelatase (MgCh) catalyses insertion of magnesium into the centre of protoporphyrin IX, the branch-point precursor for both haem and chlorophyll, leading tetrapyrrole biosynthesis into the magnesium branch(1,2). This reaction needs a cooperated action of the three subunits of MgCh: the catalytic subunit ChlH and two AAA(+) subunits, ChlI and ChlD (refs 3-5).

View Article and Find Full Text PDF

Tetrapyrrole biosynthesis in plants, algae, and most bacteria starts from the NADPH-dependent reduction of glutamyl-tRNA by glutamyl-tRNA reductase (GluTR). The GluTR-catalyzed reaction is the rate-limiting step, and GluTR is the target of multiple posttranslational regulations, such as heme feedback inhibition, for the tetrapyrrole biosynthetic pathway. A recently identified GluTR regulator, GluTR binding protein (GluBP), has been shown to spatially organize tetrapyrrole synthesis by distributing GluTR into different suborganellar locations.

View Article and Find Full Text PDF

Eukaryotic organelles have developed elaborate protein quality control systems to ensure their normal activity, among which Deg/HtrA proteases play an essential role. Plant Deg2 protease is a homologue of prokaryotic DegQ/DegP proteases and is located in the chloroplast stroma, where its proteolytic activity is required to maintain the efficiency of photosynthetic machinery during stress. Here, we demonstrate that Deg2 exhibits dual protease-chaperone activities, and we present the hexameric structure of Deg2 complexed with co-purified peptides.

View Article and Find Full Text PDF

We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.

View Article and Find Full Text PDF

It is well known that motion of LID and NMP-binding (NMP(bind)) domains in adenylate kinase (AK) is important in ligand binding and catalysis. However, the nature of such domain motions is poorly characterized. One of the critical hinge regions is hinge IV, which connects the CORE and LID domains.

View Article and Find Full Text PDF

The S-adenosylmethionine (SAM)-dependent O-methyltransferase from Leptospira interrogans (LiOMT) expressed by gene LA0415 belongs to the Methyltransf_3 family (Pfam PF01596). In this family all of the five bacterial homologues with known function are reported as SAM-dependent O-methylstransferases involved in antibiotic production. The crystal structure of LiOMT in complex with S-adenosylhomocysteine reported here is the first bacterial protein structure in this family.

View Article and Find Full Text PDF

Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions.

View Article and Find Full Text PDF

Bisphosphoglycerate mutase is an erythrocyte-specific enzyme catalyzing a series of intermolecular phosphoryl group transfer reactions. Its main function is to synthesize 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. In this paper, we directly observed real-time motion of the enzyme active site and the substrate during phosphoryl transfer.

View Article and Find Full Text PDF

The B-type cofactor-dependent phosphoglycerate mutase (dPGM-B) catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways using 2,3-bisphosphoglycerate as the cofactor. The crystal structures of human dPGM-B bound with citrate were determined in two crystal forms. These structures reveal a dimerization mode conserved in both of dPGM and BPGM (bisphosphoglycerate mutase), based on which a dPGM/BPGM heterodimer structure is proposed.

View Article and Find Full Text PDF