Publications by authors named "Yahya Refay"

Ensuring food security with severe shortages of freshwater and drastic changes in climatic conditions in arid countries requires the urgent development of feasible and user-friendly strategies. Relatively little is known regarding the impacts of the co-application (Co-A) of salicylic acid (SA), macronutrients (Mac), and micronutrients (Mic) through foliar (F) and soil (S) application strategies on field crops under arid and semiarid climatic conditions. A two-year field experiment was designed to compare the impacts of seven (Co-A) treatments of this strategy, including a control, F, F, S + F, S + F, S + F, and S + F on the agronomic performance, physiological attributes, and water productivity (WP) of wheat under normal (NI) and limited (LMI) irrigation conditions.

View Article and Find Full Text PDF

Freshwater shortage and inadequate nutrient management are the two major challenges for sustainable wheat production in arid agro-ecosystems. Relatively little is known about the positive roles of the application methods for the combination of salicylic acid (SA) and plant nutrients in sustaining wheat production under arid climatic conditions. A two-year field study was undertaken to assess the impact of seven treatments for the integrated application of SA, macronutrients, and micronutrients on the morpho-physiological traits, yield, and irrigation water use efficiency (IWUE) of wheat subjected to full (FL) and limited (LM) irrigation regimes.

View Article and Find Full Text PDF

Although plant chlorophyll (Chl) is one of the important elements in monitoring plant stress and reflects the photosynthetic capacity of plants, their measurement in the lab is generally time- and cost-inefficient and based on a small part of the leaf. This study examines the ability of canopy spectral reflectance data for the accurate estimation of the Chl content of two wheat genotypes grown under three salinity levels. The Chl content was quantified as content per area (Chl , μg cm), concentration per plant (Chl , mg plant), and SPAD value (Chl ).

View Article and Find Full Text PDF

The incorporation of stress tolerance indices (STIs) with the early estimation of grain yield (GY) in an expeditious and nondestructive manner can enable breeders for ensuring the success of genotype development for a wide range of environmental conditions. In this study, the relative performance of GY for sixty-four spring wheat germplasm under the control and 15.0 dS m NaCl were compared through different STIs, and the ability of a hyperspectral reflectance tool for the early estimation of GY and STIs was assessed using twenty spectral reflectance indices (SRIs; 10 vegetation SRIs and 10 water SRIs).

View Article and Find Full Text PDF

Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity.

View Article and Find Full Text PDF

Hybrid performance during wheat breeding can be improved by analyzing genetic distance (GD) among wheat genotypes and determining its correlation with heterosis. This study evaluated the GD between 16 wheat genotypes by using 60 simple sequence repeat (SSR) markers to classify them according to their relationships and select those with greater genetic diversity, evaluate the correlation of the SSR marker distance with heterotic performance and specific combining ability (SCA) for heat stress tolerance, and identify traits that most influence grain yield (GY). Eight parental genotypes with greater genetic diversity and their 28 F1 hybrids generated using diallel crossing were evaluated for 12 measured traits in two seasons.

View Article and Find Full Text PDF

Melatonin and metal resistant microbes can enhance plant defense responses against various abiotic stresses, but little is known about the combined effects of melatonin and chromium (Cr) resistant microbes on reducing Cr toxicity in wheat (Triticum aestivum L.). In current study, we examined the effects of combined application of melatonin (0, 1, 2 mM) and Bacillus subtilis (with and without inoculation) on wheat physio-biochemical responses and Cr uptake under different levels of Cr (0, 25, 50 and 100 mg Cr kg DM soil).

View Article and Find Full Text PDF

Manipulating plant densities under different irrigation rates can have a significant impact on grain yield and water use efficiency by exerting positive or negative effects on ET. Whereas traditional spectral reflectance indices (SRIs) have been used to assess biophysical parameters and yield, the potential of multivariate models has little been investigated to estimate these parameters under multiple agronomic practices. Therefore, both simple indices and multivariate models (partial least square regression (PLSR) and support vector machines (SVR)) obtained from hyperspectral reflectance data were compared for their applicability for assessing the biophysical parameters in a field experiment involving different combinations of three irrigation rates (1.

View Article and Find Full Text PDF

Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity among a collection of 52 sesame accessions representing different geographical environments, including eight Saudi landraces. A combination of seventeen primers generated a high number of alleles (365) with 100% polymorphism. The polymorphic information content (PIC) and primer discrimination power (DP) recorded overall means of 0.

View Article and Find Full Text PDF

Field-based trials are crucial for successfully achieving the goals of plant breeding programs aiming to screen and improve the salt tolerance of crop genotypes. In this study, simulated saline field growing conditions were designed using the subsurface water retention technique (SWRT) and three saline irrigation levels (control, 60, and 120 mM NaCl) to accurately appraise the suitability of a set of agro-physiological parameters including shoot biomass, grain yield, leaf water relations, gas exchange, chlorophyll fluorescence, and ion accumulation as screening criteria to establish the salt tolerance of the salt-tolerant (Sakha 93) and salt-sensitive (Sakha 61) wheat cultivars. Shoot dry weight and grain yield per hectare were substantially reduced by salinity, but the reduction was more pronounced in Sakha 61 than in Sakha 93.

View Article and Find Full Text PDF