Conventional techniques for purifying macromolecular conjugates often require complex and costly installments that are inaccessible to most laboratories. In this work, we develop a one-step micropreparative method based on a trilayered polyacrylamide gel electrophoresis (MP-PAGE) setup to purify biological samples, synthetic nanoparticles, as well as biohybrid complexes. We apply this method to recover DNA from a ladder mixture with yields of up to 90%, compared to the 58% yield obtained using the conventional crush-and-soak method.
View Article and Find Full Text PDFIn the present study, fabrications of two eco-friendly superhydrophobic/superoleophilic recyclable foamy-based adsorbents for oil/water mixture separation were developed. Hierarchically biomass (celery)-derived porous carbon (PC) and multi-walled carbon nanotube (MWCNT) were firstly synthesized and loaded on pristine melamine foam (MF) by the simple dip-coating approach by combining silicone adhesive to create superhydrophobic/superoleophilic, recyclable, and reusable three-dimensional porous structure. The prepared samples have a large specific surface area of 240 m/g (MWCNT), 1126 m/g (PC), and good micro-mesoporous frameworks.
View Article and Find Full Text PDFThe present study demonstrated the wettability properties of grafting silane coupling agents on carbonyl iron (CI)/SiO particles for efficient oil/water mixture and emulsion separation. CI particles were first reacted with Tetraethoxysilane (TEOS) to create a magnetic component. Then, CI/SiO particles were altered by 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS) and Hexamethyldisilazane (HDMS) to create magnetic superhydrophobic/superoleophilic, recyclable, and reusable sorbent powders.
View Article and Find Full Text PDFIn this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized.
View Article and Find Full Text PDF