Dendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L.
View Article and Find Full Text PDFMitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria.
View Article and Find Full Text PDFObjectives: To enhance the efficiency of influenza virosome-mediated gene delivery by engineering this virosome.
Results: A novel chimeric influenza virosome was constructed containing the glycoprotein of Vesicular stomatitis virus (VSV-G), along with its own hemagglutinin protein. To optimize the transfection efficiency of both chimeric and influenza cationic virosomes, HEK cells were transfected with plasmid DNA and virosomes and the transfection efficiency was assessed by FACS analysis.
Insect-derived cell lines are used extensively to produce recombinant proteins because they are capable of performing a range of post-translational modifications. Due to their significance in biotechnological applications, various methods have been developed to transfect them. In this study, we introduce a virosome constructed from vesicular stomatitis virus (VSV) as a new delivery system for sf9 cells.
View Article and Find Full Text PDF