Publications by authors named "Yahya K Alyahya"

Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated "few leaf electron collimator" (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporated within the linear accelerator operation.

View Article and Find Full Text PDF

Objective: This paper aims to determine if abnormalities of the retinal pigment epithelium (RPE) and retinal inflammation occur in primary glaucoma.

Procedure: Twenty-three canine globes with primary glaucoma, goniodysgenesis, and elevated intraocular pressure were evaluated. Sections from 6 control and 23 glaucomatous canine globes were stained with hematoxylin and eosin, Griffonia simplicifolia isolectin B4, or immunohistochemically stained for CD3 or albumin.

View Article and Find Full Text PDF

Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning.

View Article and Find Full Text PDF

Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case.

View Article and Find Full Text PDF

Energy modulated electron beam therapy with conventional clinical accelerators has lagged behind photon IMRT despite its potential to achieve highly conformal dose distributions in superficial targets. One of the reasons for this is the absence of an automated collimating device that allows for the flexible delivery of a series of variable field openings. Electron-specific multileaf collimators attached to the bottom of the applicator require the use of a large number of motors and suffer from being relatively bulky and impractical for head and neck sites.

View Article and Find Full Text PDF