Publications by authors named "Yahui Kong"

Background: The recognized pattern of cervical lymph node metastasis (CLNM) of papillary thyroid carcinoma involves a stepwise route. Contralateral lymph node skip metastasis is very rare. In addition, the patient in our case report also suffered from a breast carcinoma accompanied by left supraclavicular lymphadenopathy, which made it difficult to distinguish the origin of the CLNM.

View Article and Find Full Text PDF

The antisense non-coding RNA in the INK locus (ANRIL) is a hotspot for genetic variants associated with cardiometabolic disease. We recently found increased ANRIL abundance in human pancreatic islets from donors with certain Type II Diabetes (T2D) risk-SNPs, including a T2D risk-SNP located within ANRIL exon 2 associated with beta cell proliferation. Recent studies have found that expression of circular species of ANRIL is linked to the regulation of cardiovascular phenotypes.

View Article and Find Full Text PDF

This work focuses on the use, for the first time to our knowledge, of dual laser beams in photothermal-effect-based propulsion of small size objects at liquid interfaces. Compared with the single-laser mode, dual-laser-actuated operation turns out to be much more controllable with high quality, efficiency, and anti-interference capacity, which can be achieved through automated programming instead of through manual operation. A series of experiments were carried out to verify the principle, with the effects of laser power, laser-spot distance, and movement speed discussed in detail.

View Article and Find Full Text PDF

The genomic locus is associated with risk of human cancers and metabolic disease. Although the locus contains several important protein-coding genes, studies suggest disease roles for a lesser-known antisense lncRNA encoded at this locus, called . is a complex gene containing at least 21 exons in simians, with many reported linear and circular isoforms.

View Article and Find Full Text PDF

Experiments using isolated pancreatic islets are important for diabetes research, but islets are expensive and of limited abundance. Islets contain a mixed cell population in a structured architecture that impacts function, and human islets are widely variable in cell type composition. Current frequently used methods to study cultured islets include molecular studies performed on whole islets, lumping disparate islet cell types together, or microscopy or molecular studies on dispersed islet cells, disrupting islet architecture.

View Article and Find Full Text PDF

Genome-wide association studies link the locus with type 2 diabetes (T2D) risk, but mechanisms increasing risk remain unknown. The locus encodes cell cycle inhibitors , , and ; ; and , a long noncoding RNA. The goal of this study was to determine whether T2D risk SNPs impact locus gene expression, insulin secretion, or β-cell proliferation in human islets.

View Article and Find Full Text PDF

Type 2 diabetes, fuelled by the obesity epidemic, is an escalating worldwide cause of personal hardship and public cost. Diabetes incidence increases with age, and many studies link the classic senescence and ageing protein p16(INK4A) to diabetes pathophysiology via pancreatic islet biology. Genome-wide association studies (GWASs) have unequivocally linked the CDKN2A/B locus, which encodes p16 inhibitor of cyclin-dependent kinase (p16(INK4A)) and three other gene products, p14 alternate reading frame (p14(ARF)), p15(INK4B) and antisense non-coding RNA in the INK4 locus (ANRIL), with human diabetes risk.

View Article and Find Full Text PDF

An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor.

View Article and Find Full Text PDF

In this study, O-carboxymethyl chitosan (O-CMCS) was synthesized from chitosan and monochloroacetic acid. Then O-CMCS hydrogel was prepared by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in which the lincomycin was packaged. The Fourier transform infrared spectrum and scanning electron microscopy were adopted to characterize the structure and morphology of the product.

View Article and Find Full Text PDF

Aging is characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-associated diseases and death. One potential cause of aging is the progressive accumulation of dysfunctional mitochondria and oxidative damage with age. Considerable efforts have been made in our understanding of the role of mitochondrial dysfunction and oxidative stress in aging and age-associated diseases.

View Article and Find Full Text PDF

The age-dependent decline in the self-renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age-dependent decline of stem cell self-renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence.

View Article and Find Full Text PDF

About half of patients with diffuse large B-cell lymphoma (DLBCL) do not respond to or relapse soon after the standard chemotherapy, indicating a critical need to better understand the specific pathways perturbed in DLBCL for developing effective therapeutic approaches. Mice deficient in the E3 ubiquitin ligase Smurf2 spontaneously develop B-cell lymphomas that resemble human DLBCL with molecular features of germinal centre or post-germinal centre B cells. Here we show that Smurf2 mediates ubiquitination and degradation of YY1, a key germinal centre transcription factor.

View Article and Find Full Text PDF

Notch signaling regulates a broad spectrum of cell fate decisions and differentiation. Both oncogenic and tumor suppressor functions have been shown for Notch signaling. However, little is known about the underlying mechanisms of its tumor suppressor function.

View Article and Find Full Text PDF

The E3 ubiquitin ligase Smurf2 mediates ubiquitination and degradation of several protein targets involved in tumorigenesis and induces senescence in human cells. However, the functional role of Smurf2 in tumorigenesis has not been fully evaluated. In this study, we generated a mouse model of Smurf2 deficiency to characterize the function of this E3 ligase in tumorigenesis.

View Article and Find Full Text PDF

Objective: Hepatoma-derived growth factor (HDGF)-related proteins (HRPs) comprise a family of six members and are characterised by a conserved HATH domain. Among the family members, HDGF was the first to be identified as a mitogenic factor and shown to play an important role in hepatocellular carcinoma pathogenesis. The aim of the present study is to examine the relevance of HDGF-related protein-3 (HRP-3), another member of the HRP family in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed, including the free-radical and mitochondrial theories of aging.

View Article and Find Full Text PDF

The inhibitor of differentiation or DNA binding (Id) family of transcription regulators plays an important role in cell proliferation, differentiation, and senescence. However, regulation of Id expression during these processes is poorly understood. Id proteins are known to undergo rapid turnover mediated by the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Senescence is regarded as a physiological response of cells to stress, including telomere dysfunction, aberrant oncogenic activation, DNA damage, and oxidative stress. This stress response has an antagonistically pleiotropic effect to organisms: beneficial as a tumor suppressor, but detrimental by contributing to aging. The emergence of senescence as an effective tumor suppression mechanism is highlighted by recent demonstration that senescence prevents proliferation of cells at risk of neoplastic transformation.

View Article and Find Full Text PDF

The limitation of proliferative potential in human somatic cells imposed by replicative senescence has been proposed as a mechanism of tumor suppression. The E3 ubiquitin ligase Smurf2 is up-regulated during replicative senescence in response to telomere shortening, and induces senescence when expressed adventitiously in early passage or telomerase-immortalized human fibroblasts. To investigate the generality of Smurf2's control of cell proliferation, we have studied the effects of Smurf2 up-regulation on cell proliferation in early passage human mammary epithelial cells which normally do not show elevated expression of Smurf2 during senescence, and in 16 human cancer cell lines derived from both sarcomas and carcinomas.

View Article and Find Full Text PDF

The Na+/H+ exchangers (NHEs) catalyze the transport of Na+ in exchange for H+ across membranes in organisms and are required for numerous physiological processes. Here we report the cloning and characterization of a novel human NHEDC1 (Na+/H+ exchanger like domain containing 1) gene, which was mapped to human chromosome 4p24. This cDNA is 1859 bp in length, encoding a putative protein of 515 amino acids.

View Article and Find Full Text PDF

Cellular retinaldehyde-binding protein (CRALBP) plays a role in the vertebrate visual process as a substrate-routing protein. It belongs to a widespread lipid-binding SEC14-like protein family. All the members of the family have the lipid-binding domain called CRAL-TRIO.

View Article and Find Full Text PDF

Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Through PCR cloning assisted by in silico approach, we isolated the human glycerate kinase genes--Glycerate Kinase 1 (GLYCTK1) and its alternatively splicing variant--Glycerate Kinase 2 (GLYCTK2), which might be associated with D-glycerate acidemia/D-glyceric aciduria. The locus of GLYCTK gene is mapped to 3p21.

View Article and Find Full Text PDF

Objective: To investigate the possible roles of MT1M gene on the cell cycle and signaling pathway of Hep-G2.

Methods: Hep-G2 human hepatoma cells made by transfection with expressible MT1M gene, and the cell cycle was detected by flow cytometry, and the signaling pathway was measured by dual luciferase assay in Hep-G2 cells.

Results: MT1M gene was able to induce changes of the cell cycle and the activation of NF-kappaB pathway in Hep-G2 cells.

View Article and Find Full Text PDF