Although the effects of human-enhanced atmospheric nitrogen (N) deposition are well documented, the response of dryland soils to N deposition remains unclear owing to the divergence in hydrological outputs and soil heterogeneity. We selected a typical desert steppe in western China to simulate the effects of long-term N deposition by applying 0 (CK), 3.5, 7, and 14 g N m yr for 12 consecutive years.
View Article and Find Full Text PDFLong-term wastewater irrigation leads to the loss of calcium carbonate (CaCO) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%.
View Article and Find Full Text PDFSoil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg. We found that soil-bioavailable Cu and Pb contents increased by 2.
View Article and Find Full Text PDFSoil solution pH and dissolved organic carbon (DOC) influence cadmium (Cd) uptake by hyperaccumulators but their tradeoff in calcareous soils is unclear. This study investigated the mechanisms of Solanum nigrum L. and Solanum alatum Moench in calcareous soil using a combination of concentration gradient experiments (0.
View Article and Find Full Text PDFThe trace element (TE) contamination of farmland caused by wastewater irrigation threatens food security and food safety. We selected a typical calcareous soil area in western China that has been irrigated with wastewater for >50 years to explore safe use strategies for flax farmland contaminated by cadmium (Cd) and arsenic (As). We found that Cd and As were mainly accumulated in flax roots rather than seeds.
View Article and Find Full Text PDFScreening and cultivating crop varieties with low Cd accumulation is an effective way to safely utilize the Cd slightly contaminated soil. The characteristics and mechanism of Cd uptake by 13 wheat varieties in two calcareous soils with similar Cd contamination level but different P supply level were studied. The grain Cd concentration of almost all varieties in low-P soil was significantly higher than that in high-P soil and exceeded the maximum level of 0.
View Article and Find Full Text PDFCalcareous soil has a strong buffering capacity for neutralizing acid and stabilizing cadmium (Cd) because of the high calcium carbonate (CaCO) content. However, it is not clear whether the buffering capacity of calcareous soil can be maintained after long-term wastewater irrigation. We selected a typical area in western China that has been irrigated with wastewater for over 50 years to study the temporal changes of soil properties and their effects on Cd uptake by wheat.
View Article and Find Full Text PDFPoplar serves as a phytostabilizator in phytomanagement of the trace metals (TMs) copper (Cu) and lead (Pb) contaminated land. In the process of long-term phytomanagement, it is not clear how the cycling of the mineral nutrients calcium (Ca) and sodium (Na) in calcareous soil will affect poplar remediation mechanisms. We selected a site contaminated by Cu and Pb and phytomanaged by Populus simonii Carr.
View Article and Find Full Text PDFBioavailability of trace metals (TMs) is the key component in the management of TM-contaminated soils; however, its impact mechanism is unclear in low-phosphorus (P) calcareous soils afforested by fast-growing tree species for a long duration (>10 years). We selected a site contaminated with multiple TMs and phytomanaged by poplar (Populus hopeiensis Hu & Chow) to study the impact mechanism of plant-soil interactions on TM bioavailability along a long-term chronosequence (i.e.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2018
Mirabilis jalapa L. is an ornamental plant of the composite family, which was found hyperaccumulating Cd. Due to its larger biomass, developed root system, root exudation, and microbial interactions, certain organic pollutants in its rhizosphere can be effectively degraded.
View Article and Find Full Text PDFMetal bioavailability and extracellular enzyme activity are two important indicators of soil quality in metal-contaminated soil. However, it is unclear how the chronosequence effect modifies these two factors in highly contaminated calcareous soils undergoing afforestation. We used Populus simonii Carr.
View Article and Find Full Text PDFTo investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted.
View Article and Find Full Text PDFThe object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals.
View Article and Find Full Text PDFInt J Phytoremediation
September 2011
A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
May 2009
To explore a rapid seed germination method for hyperaccumulator Solanum nigrum, a germination experiment with different illumination and seed-soaking treatments was conducted in constant temperature box and greenhouse, with filter as burgeon base. Under illumination, the germination rate was about 5 times high of that without illumination (P < 0.05), indicating that illumination was one of the prerequisites for the seed germination of S.
View Article and Find Full Text PDFCharacteristics of accumulation and tolerance of cadmium (Cd) in Bidens tripartite L. were investigated to identify Cd-accumulating properties. In this study, pot culture experiment and site sampling experiments were conducted to assess whether this plant is a heavy metal hyperaccumulator or accumulator.
View Article and Find Full Text PDFSolanum nigrum is a newly found Cd-hyperaccumulator which showed very high remediation efficiency in polluted soil. Seed germination experiments with different illumination and seed-soaking reagents were conducted in constant temperature box and greenhouse with soil as burgeon base. The results showed that the germination rate with alternating light/dark photoperiod was about twice of that without lighting (p < 0.
View Article and Find Full Text PDFOne of key steps of phytoremediating heavy metal contaminated soils is still the identification of hyperaccumulator and accumulator. In a former published article, Conyza canadensis L. Cronq.
View Article and Find Full Text PDFThe screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment.
View Article and Find Full Text PDF