Nanostructured bismuth ferrite (BiFeO) single-phase nanoparticles with 76.2% crystallinity and 100% perovskite structure were synthesized using a co-precipitation method. The X-ray diffraction pattern confirmed the perovskite structure of BFO, and Rietveld refinement demonstrated the presence of a triclinic structure with the 1 space group.
View Article and Find Full Text PDFMagnesium-sulfur (Mg-S) batteries offer a promising energy storage system due to their high theoretical capacity. However, the sluggish conversion reaction kinetics and the shuttle effect of magnesium polysulfides hinder their practical application. The high charge density of the divalent Mg cations leads to slow kinetics caused by significant electrostatic interactions between Mg and its surrounding solvent and anion species.
View Article and Find Full Text PDFFunctionalization of cellulose with nanomaterials and functional groups is essential for enhancing its properties for specific applications, such as flexible sensors and printed electronics. This study employs Hartree Fock (HF) and Density Functional Theory (DFT) calculations to investigate the vibrational spectra of cellulose, identifying DFT: B3LYP/3-21 g** as the optimal model aligning with experimental spectra. Using this model, we examined the impact of functionalizing cellulose with various groups (OH, NH, COOH, CH, CHO, CN, SH) and graphene oxide (GO) on its electronic properties.
View Article and Find Full Text PDFThe auto-combustion method synthesized CuO NPs and Ag/CuO NPs. The Ag/CuO NPs were analyzed using Fourier-transform infrared, X-ray diffraction, scanning electron microscope, and Energy-dispersive X-ray spectroscopy instrumental analyses. The energy band gap, as determined by DRS properties, decreases from 3.
View Article and Find Full Text PDFDesigning heterostructure photocatalysts is a promising approach for developing highly efficient photocatalysts for hydrogen energy production. In this work, we synthesized a series of a covalent organic framework (COF)/g-CN (CN) heterojunction photocatalysts, denoted as x % COF/CN (in which x indicates the weight % of COF and x = 5, 10, 20, 30, 40, 50, 90, 95, 100), for hydrogen production. The COF, which is a key component of the photocatalyst, was prepared by assembling benzothiadiazole (BT) and pyrene (Py) derivatives as building blocks.
View Article and Find Full Text PDFPolytetrafluoroethylene (PTFE) is one of the most significant fluoropolymers, and one of the most recent initiatives is to increase its performance by using metal oxides (MOs). Consequently, the surface modifications of PTFE with two metal oxides (MOs), SiO and ZnO, individually and as a mixture of the two MOs, were modeled using density functional theory (DFT). The B3LYPL/LANL2DZ model was used in the studies conducted to follow up the changes in electronic properties.
View Article and Find Full Text PDFThe present study, LaSrMO (M = Mn-, Co-, and Fe-), perovskite, has successfully been synthesized via co-precipitation and sol-gel auto-combustion. XRD, SEM, and EDX characterized the prepared samples. XRD and SEM showed that the as-prepared LaSrMnO and LaSrCoO have multiphase.
View Article and Find Full Text PDFIn this present work, a PVA/PVP-blend polymer was doped with various concentrations of neodymium oxide (PB-Nd) composite films using the solution casting technique. X-ray diffraction (XRD) analysis was used to investigate the composite structure and proved the semi-crystallinity of the pure PVA/PVP polymeric sample. Furthermore, Fourier transform infrared (FT-IR) analysis, a chemical-structure tool, illustrated a significant interaction of PB-Nd elements in the polymeric blends.
View Article and Find Full Text PDFIn this paper, we discuss the preparation of Li-doped ZnO nanostructures through combustion and report on their structural, morphological, optical, and electrocatalysis properties. X-ray diffraction analyses show that the samples have a structure crystallized into the usual hexagonal wurtzite ZnO structure according to the space group. The scanning electron microscope images conceal all samples' nanosphere bundles and aggregates.
View Article and Find Full Text PDFA lanthanum oxide (LaO)-ZnO nanostructured material was synthesized in the proposed study with different LaO concentrations, 0.001 g to 5 g (named So to S7), using the combustion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT-IR) were utilized for investigating the structure, morphology, and spectral studies of the LaO- ZnO nanomaterials, respectively.
View Article and Find Full Text PDFBackground: Carbapenemase-producing Gram-negative (CPGN) bacteria impose life-threatening infections with limited treatment options. Rigor and rapid detection of CPGN-associated infections is usually associated with proper treatment and better disease prognosis. Accordingly, this study aimed at evaluating the phenotypic methods versus genotypic methods used for the detection of such pathogens and determining their sensitivity/specificity values.
View Article and Find Full Text PDFThe target is a novel nano-combination membrane (NCM) via Terbium oxide nanoparticles (TbO NPs) and nickel oxide (NiO NPs) which integrates on the graphene oxide (GO) surface. The NCM is characterized by different tools such as X-ray diffraction (XRD), UV-visible spectrophotometer (UV-vis), and Scanning electron microscopy (SEM)for removing organic pollutants. The precipitation method has been applied for fabricating the selected metal oxides (MOs), where the terbium chloride and nickel chloride are used as precursors for fabricating the metal oxides (MOs) NPs that formed with potassium hydroxide in the solution.
View Article and Find Full Text PDFThis study aimed to investigate the chemical composition of essential oils isolated from Acca sellowiana (feijoa) leaves and stems and elaborate on their relevance as natural anti-aging, coupled with molecular-docking studies. The isolated oils were analysed using gas chromatography-mass spectrometry analysis and investigated for inhibitory effects against acetylcholinesterase, β-secretase, collagenase, elastase and tyrosinase. Molecular-modelling study was performed using MOE-Dock program to evaluate binding interactions of major components with the above-mentioned targets.
View Article and Find Full Text PDFBackground: Fungi are rich source of biologically active metabolites aimed for the improvement of human health through the prevention of various diseases, including infections and inflammatory disorders.
Aim: We aimed to in vitro examine the anti-SARS CoV-2 activity of the aqueous extract of each .) , (.
An efficient and environmentally friendly combustion technique was employed to produce ZnO nanopowders with different Eu concentrations (from 0.001 g to 5 g). The structural morphology of the EuO-ZnO nanocomposites was examined using XRD, SEM, and infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFIn this study, the X-ray and gamma attenuation characteristics and optical properties of a synthesized tellurite-phosphate-sodium oxide glass system with a composition of (85 - x)TeO-10PO-xNaO mol% (where x = 15, 20, and 25) were evaluated. The glass systems we re fabricated by our research group using quenching melt fabrication. The shielding parameters of as-synthesized systems, such as the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), effective atomic number (Z), half-value layer (HVL), tenth value layer (TVL), mean free path (MFP), and effective electron density (N) in a wide energy range between 15 keV and 15 MeV, were estimated using well-known PHY-X/PSD software and recently developed MIKE software.
View Article and Find Full Text PDFIn the present work, 0.25 wt%GNP-Ti composites were prepared through powder metallurgy route by adopting three types of mixing modes to investigate the extent of mixing on the mechanical and tribological properties. Dry ball milling, wet ball milling, and rotator mixing were independently employed to homogenize the composite constituents.
View Article and Find Full Text PDFThe incorporation of tungsten trioxide (WO) by various concentrations of graphitic carbon nitride (g-CN) was successfully studied. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and Diffused Reflectance UV-Vis techniques were applied to investigate morphological and microstructure analysis, diffused reflectance optical properties, and photocatalysis measurements of WO/g-CN photocatalyst composite organic compounds. The photocatalytic activity of incorporating WO3 into g-CN composite organic compounds was evaluated by the photodegradation of both Methylene Blue (MB) dye and phenol under visible-light irradiation.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2022
The growth of the textile industry results in a massive accumulation of dyes on water. This enormous rise in pigments is the primary source of water pollution, affecting the aquatic lives and our ecosystem balance. This study aims to notify the fabrication of neodymium incorporated copper oxide (NdO doped CuO) nanoparticles by combustion method for effective degradation of dye, methylene blue (MB).
View Article and Find Full Text PDFThe current exploration focuses on the impact of homogeneous and heterogeneous chemical reactions on titanium dioxide-ethylene glycol (EG)-based nanoliquid flow over a rotating disk with thermal radiation. In this paper, a horizontal uniform magnetic field is used to regularise the flow field produced by a rotating disk. Further, we conduct a comparative study on fluid flow with and without aggregation.
View Article and Find Full Text PDFThe purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique.
View Article and Find Full Text PDFThe surface of pure polytetrafluoroethylene (PTFE) microfibers was modified with ZnO and graphene (G), and the composite was studied using ATR-FTIR, XRD, and FESEM. FTIR results showed that two significant bands appeared at 1556 cm and 515 cm as indications for CuO and G interaction. The SEM results indicated that CuO and G were distributed uniformly on the surface of the PTFE microfibers, confirming the production of the PTFE/CuO/G composite.
View Article and Find Full Text PDFis a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of .
View Article and Find Full Text PDFThe hybrid nanofluid has sparked new significance in the industrial and engineering sectors because of their applications like water heating in solar and analysis of heat exchanger surfaces. As a result, the current study emphasizes the analysis of heat transfer and Agrawal axisymmetric flow towards a rotational stagnation point incorporated via hybrid nanofluids imposing on a radially permeable shrinking/stretching rotating disk. The leading partial differential equations are refined into ordinary differential equations by using appropriate similarity variables.
View Article and Find Full Text PDFNovel glass samples with the composition 75TeO-5TaO-15NbO-5x (where x = ZnO, MgO, TiO, or NaO) in mole percent were prepared. The physical, optical, and gamma radiation shielding properties of the glass samples were studied over a wide energy spectrum ranging between 0.015 and 20 MeV.
View Article and Find Full Text PDF