Incorporating magnetic ions into semiconductor nanocrystals has emerged as a prominent research field for manipulating spin-related properties. The magnetic ions within the host semiconductor experience spin-exchange interactions with photogenerated carriers and are often involved in the recombination routes, stimulating special magneto-optical effects. The current account presents a comparative study, emphasizing the impact of engineering nanostructures and selecting magnetic ions in shaping carrier-magnetic ion interactions.
View Article and Find Full Text PDFCopper-doped II-VI and copper-based I-III-VI colloidal quantum dots (CQDs) have been at the forefront of interest in nanocrystals over the past decade, attributable to their optically activated copper states. However, the related recombination mechanisms are still unclear. The current work elaborates on recombination processes in such materials by following the spin properties of copper-doped CdSe/CdS (Cu@CdSe/CdS) and of CuInS and CuInS/(CdS, ZnS) core/shell CQDs using continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy.
View Article and Find Full Text PDFControlling the spin degrees of freedom of photogenerated species in semiconductor nanostructures magnetic doping is an emerging scientific field that may play an important role in the development of new spin-based technologies. The current work explores spin properties in colloidal CdSe/CdS:Mn seeded-nanorod structures doped with a dilute concentration of Mn ions across the rods. The spin properties were determined using optically detected magnetic resonance (ODMR) spectroscopy recorded under variable microwave chopping frequencies.
View Article and Find Full Text PDFThe incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier-guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/CdMnS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy.
View Article and Find Full Text PDFA multidisciplinary approach for the production and characterization of colloidal quantum dots, which show great promise for implementation in modern optoelectronic applications, is described. The approach includes the design and formation of unique core/shell structures with alloy-composed layers between the core and the shell. Such structures eliminate interfacial defects and suppress the Auger process, thus reducing the known fluorescence blinking and endowing the quantum dots with robust chemical and spectral stability.
View Article and Find Full Text PDF