Publications by authors named "Yahao Ge"

Lung cancer is one of the most common malignant tumors. Despite decades of research, the treatment of lung cancer remains challenging. Non-small cell lung cancer (NSCLC) is the primary type of lung cancer and is a significant focus of research in lung cancer treatment.

View Article and Find Full Text PDF

Background: Extreme ambient temperatures have been linked to increased risks of stroke morbidity and mortality. However, global estimates of the burden of stroke due to extreme low temperatures are not well-defined.

Aims: This study aimed to determine the global burden of stroke due to extreme low temperatures and its spatiotemporal trend from 1990 to 2019.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC) exosomes promote tissue regeneration and repair, and thus might be used to treat many diseases; however, the influence of microenvironmental conditions on exosomes remains unclear. The present study aimed to analyze the effect of osteogenic induction on the functions of human umbilical cord MSC (HucMSC)-derived exosomes. Exosomes from standardized stem cell culture (Exo1) and osteogenic differentiation-exosomes (Exo2) were co-cultured with osteoblasts, separately.

View Article and Find Full Text PDF

The copper nanowire (Cu NW) network is considered a promising alternative to indium tin oxide as transparent conductors for advanced optoelectronic devices. However, the fast degradation of copper in ambient conditions largely overshadows its practical applications. Here we demonstrate a facile method for epitaxial growth of hexagonal boron nitride (h-BN) of a few atomic layers on interlaced Cu NWs by low-pressure chemical vapor deposition, which exhibit excellent thermal and chemical stability under high temperature (900 °C in vacuum), high humidity (95% RH), and strong base/oxidizer solution (NaOH/HO).

View Article and Find Full Text PDF

The integration of one more gain media in droplet microlasers with morphology-dependent modes, which can be employed in optofluidic systems as multi-wavelength lasing sources, is highly attractive and demands new cavity design and fabrication approaches. Here, cholesteric liquid crystal (CLC) droplets with an integrative triple-emulsion cavity are fabricated via glass-capillary-based microfluidic technologies and dual-gain lasing with variable modes, flexibly configured by the combination and incorporation of gain dyes and CLCs into both the core and shell. The distributed feedback (DFB) mode, formed by the feedback from the self-assembled helix periodic structure of CLCs, the whispering gallery (WG) mode, and the hybrid, is selectively excited by controlling the spatial coupling between the pump beam and the droplet with gain.

View Article and Find Full Text PDF

We present a convenient approach to facilitate the real-time generation of updatable dynamically patterned cholesteric liquid crystal (CLC) fingerprint textures based on photoconductive effect. The photoconductive BiSiO (BSO) substrate acts as virtual electrode to obtain the desired states of CLCs by both electric and light fields. Owing to different boundary conditions, the switching of four states; that is, planar, fingerprint, metastable, and homeotropic states, and the rotation of fingerprint stripes can be achieved in planar alignment (PA) cell and hybrid alignment (HA) cell, respectively.

View Article and Find Full Text PDF

We present a convenient photoalignment approach to fabricate rewritable fingerprint textures with designed geometrical patterns based on methyl red doped cholesteric liquid crystals (MDCLCs). MDCLC systems with/without nanoparticles of polyhedral oligomeric silsesquioxanes (POSS) were employed to realize two types of sophisticated binary patterns, respectively. Based on the understanding of involved mechanisms related to boundary conditions and middle-layer theory, we demonstrated the precise manipulation of fingerprint patterns by varying the fingerprint grating vectors in different domains.

View Article and Find Full Text PDF