An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures.
View Article and Find Full Text PDFElectrospinning is an increasingly popular technique to generate 3D fibrous tissue scaffolds that mimic the submicron sized fibers of extracellular matrices. A major drawback of electrospun scaffolds is the small interfibrillar pore size, which normally prevents cellular penetration in between fibers. In this study, we introduced a novel process, based on electrospinning, to manufacture a unique gradient porous fibrous (GPF) scaffold from soy protein isolate (SPI).
View Article and Find Full Text PDFHypothesis: Custom prostheses could be used to recreate the ossicular chain and improve hearing.
Background: Ossicular discontinuity or fixation occurs in 55% of cases of conductive hearing loss, with most cases involving the incus. Reconstruction has been achieved by a variety of methods; however, there has been little improvement in hearing outcomes in decades.
J Tissue Eng Regen Med
December 2013
As a potential alternative to currently available skin substitutes and wound dressings, we explored the use of bioactive scaffolds made of plant-derived proteins. We hypothesized that 'green' materials, derived from renewable and biodegradable natural sources, may confer bioactive properties to enhance wound healing and tissue regeneration. We optimized and characterized fibrous scaffolds electrospun from soy protein isolate (SPI) with addition of 0.
View Article and Find Full Text PDFA variety of (super)paramagnetic contrast agents are available for enhanced MR visualization of specific tissues, cells, or molecules. To develop alternative contrast agents without the presence of metal ions, liposomes were developed containing simple bioorganic and biodegradable compounds that produce diamagnetic chemical exchange saturation transfer MR contrast. This diamagnetic chemical exchange saturation transfer contrast is frequency-dependent, allowing the unique generation of "multicolor" images.
View Article and Find Full Text PDFLiposome-based chemical exchange saturation transfer (lipoCEST) agents have shown great sensitivity and potential for molecular magnetic resonance imaging (MRI). Here we demonstrate that the size of liposomes can be exploited to enhance the lipoCEST contrast. A concise analytical model is developed to describe the contrast dependence on size for an ensemble of liposomes.
View Article and Find Full Text PDF