Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive.
View Article and Find Full Text PDFVirus-like particles (VLPs) are emerging as nanoscaffolds in a variety of biomedical applications including delivery of vaccine antigens and cargo such as mRNA to mucosal surfaces. These soft, colloidal, and proteinaceous structures (capsids) are nevertheless susceptible to mucosal environmental stress factors. We cross-linked multiple capsid surface amino acid residues using homobifunctional polyethylene glycol tethers to improve the persistence and survival of the capsid to model mucosal stressors.
View Article and Find Full Text PDFSecreted immunoglobulins, predominantly SIgA, influence the colonization and pathogenicity of mucosal bacteria. While part of this effect can be explained by SIgA-mediated bacterial aggregation, we have an incomplete picture of how SIgA binding influences cells independently of aggregation. Here we show that akin to microscale crosslinking of cells, SIgA targeting the Typhimurium O-antigen extensively crosslinks the O-antigens on the surface of individual bacterial cells at the nanoscale.
View Article and Find Full Text PDFHypothesis: Virus-like particles (VLPs) are promising scaffolds for developing mucosal vaccines. For their optimal performance, in addition to design parameters from an immunological perspective, biophysical properties may need to be considered.
Experiments: We investigated the mechanical properties of VLPs scaffolded on the coat protein of Acinetobacter phage AP205 using atomic force microscopy and small angle X-ray scattering.
The nuclear lamina is a fundamental constituent of metazoan nuclei. It is composed mainly of lamins, which are intermediate filament proteins that assemble into a filamentous meshwork, bridging the nuclear envelope and chromatin. Besides providing structural stability to the nucleus, the lamina is involved in many nuclear activities, including chromatin organization, transcription and replication.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomography in conjunction with subtomogram averaging. In addition to resolving individual protein domains of the NPC constituents, we propose a model for the architecture of the molecular gate at its central channel.
View Article and Find Full Text PDFSUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and impaired the formation of prophase NE invaginations (PNEIs), similar to microtubule depolymerization or down-regulation of the dynein cofactors NudE/EL.
View Article and Find Full Text PDFBackground Information: The mitogenic pathway, composed of RAF kinases, mitogen-activated protein kinase kinases (MEK) and extracellular signal-regulated kinases (ERK), promotes cell proliferation and migration and is upregulated in many tumours. DiRas3 (ARHI, Noey2), a mainly GTP-bound Ras-like protein with an unusual N-terminal extension, is predominantly lost in ovarian and breast cancers. Its re-expression in these tissues impairs cell proliferation, autophagy, apoptosis and cell migration.
View Article and Find Full Text PDFIntegral membrane proteins of the inner nuclear membrane (INM) are inserted into the endoplasmic reticulum membrane during their biogenesis and are then targeted to their final destination. We have used human SUN2 to delineate features that are required for INM targeting and have identified multiple elements that collectively contribute to the efficient localization of SUN2 to the nuclear envelope (NE). One such targeting element is a classical nuclear localization signal (cNLS) present in the N-terminal, nucleoplasmic domain of SUN2.
View Article and Find Full Text PDFROS are a risk factor of several cardiovascular disorders and interfere with NO/soluble guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signaling through scavenging of NO and formation of the strong oxidant peroxynitrite. Increased oxidative stress affects the heme-containing NO receptor sGC by both decreasing its expression levels and impairing NO-induced activation, making vasodilator therapy with NO donors less effective. Here we show in vivo that oxidative stress and related vascular disease states, including human diabetes mellitus, led to an sGC that was indistinguishable from the in vitro oxidized/heme-free enzyme.
View Article and Find Full Text PDF