Hierarchical compartmentalization responding to changes in intracellular and extracellular environments is ubiquitous in living eukaryotic cells but remains a formidable task in synthetic systems. Here we report a two-level compartmentalization approach based on a thermo-responsive aqueous two-phase system (TR-ATPS) comprising poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX). Liquid membraneless compartments enriched in PNIPAM are phase-separated from the continuous DEX solution via liquid-liquid phase separation at 25 °C and shrink dramatically with small second-level compartments generated at the interface, resembling the structure of colloidosome, by increasing the temperature to 35 °C.
View Article and Find Full Text PDFLarge forgings are crucial in aerospace applications; however, the residual stresses generated during their forming and heat treatment seriously affect their serviceability. Therefore, the non-destructive detection of residual stresses in large forgings is of far-reaching significance for ensuring the quality of forgings and realising precision machining. Although a variety of detection methods are available, there is still a lack of a programme that can comprehensively, accurately and non-destructively measure the residual stresses in large forgings.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
June 2024
Triboelectric nanogenerators (TENGs) have emerged as promising devices for generating self-powered therapeutic electrical stimulation over multiple aspects of wound healing. However, the challenge of achieving full 100% contact in conventional TENGs presents a substantial hurdle in the quest for higher current output, which is crucial for further improving healing efficacy. Here, a novel multifunctional wound healing system is presented by integrating the aqueous-aqueous triboelectric nanogenerators (A-A TENGs) with a functionalized conductive hydrogel, aimed at advancing infected wound therapy.
View Article and Find Full Text PDFThe effects of moisture and drying shrinkage can lead to uneven settlement, cracking, and other diseases in loess subgrade. The objective of this study was to investigate the effects of amide polymer (AP) on the permeability, mechanical properties and crack resistance of loess by orthogonal experiments. The basic properties of AP and the permeability, mechanical properties, and dry-wet variation properties of polymer-modified loess were tested, and a scale model verification and simulation analysis were conducted.
View Article and Find Full Text PDFPurpose: The study aims to explore the proteomic profile and specific target proteins associated with muscle growth in response to botulinum neurotoxin A (BoNT-A) treatment, in order to improve spasticity management in children with cerebral palsy (CP).
Experimental Design: A total of 54 participants provided 60 plasma samples for proteomic analysis. Among them, six children were sampled before and after receiving their first BoNT-A injection.
ACS Appl Mater Interfaces
February 2024
Healing traumatic wounds is arduous, leaving miscellaneous demands for ideal wound dressings, such as rapid hemostasis, superior wet tissue adhesion, strong mechanical properties, and excellent antibacterial activity. Herein, we report a self-gelling, wet adhesive, stretchable (polyethylenimine/poly(dimethylammonium chloride)/(poly(acrylic acid)/poly(sodium styrenesulfonate)/alkylated chitosan)) ((PEI/PDDA)/(PAA/PSS)/ACS) powder as a new option. The self-gel utilizes noncovalent interactions among in situ formed PDDA/PSS nanoparticles and PEI/PAA polymetric matrices to earn sensational mechanical properties and tensile strength while incorporating ACS to obtain fast hemostasis and therapeutic capacities.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection.
View Article and Find Full Text PDFMaterials (Basel)
December 2023
To investigate the durability of cementitious materials under complex environmental conditions in Xinjiang, this study conducted durability tests on mortar specimens with different fly ash contents under dry/wet sulfate attack conditions, with standard curing and steam curing at 70 °C. The appearance loss and flexural and compressive strength variations in the specimens were analyzed, and an evolution model of the mortar strength under a dry/wet sulfate attack was established. Moreover, XRD and SEM techniques were used to characterize the erosion products and microstructure, and to explore the erosion resistance mechanism of fly ash cementitious materials.
View Article and Find Full Text PDFOsteoarthritis (OA) is a common chronic degenerative disease which is characterized by the disruption of articular cartilage. Syringic acid (SA) is a phenolic compound with anti-inflammatory, antioxidant, and other effects including promoting osteogenesis. However, the effect of SA on OA has not yet been reported.
View Article and Find Full Text PDFUpland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.
View Article and Find Full Text PDFJ Neuroinflammation
September 2023
Background: Japanese encephalitis virus (JEV) remains a predominant cause of Japanese encephalitis (JE) globally. Its infection is usually accompanied by disrupted blood‒brain barrier (BBB) integrity and central nervous system (CNS) inflammation in a poorly understood pathogenesis. Productive JEV infection in brain microvascular endothelial cells (BMECs) is considered the initial event of the virus in penetrating the BBB.
View Article and Find Full Text PDFAn operationally simple and efficient method for the cyclization of tertiary amines and hypervalent iodine reagents enabled by an EDA complex has been developed. A series of [1,2-α]indoles derivatives were obtained in good yields, including some key intermediates for the synthesis of biologically active molecules. In addition, this established strategy features a broad substrate scope and good functional group tolerance.
View Article and Find Full Text PDFNanoimprint lithography (NIL) is a cost-effective and high-throughput technique for replicating nanoscale structures that does not require expensive light sources for advanced photolithography equipment. NIL overcomes the limitations of light diffraction or beam scattering in traditional photolithography and is suitable for replicating nanoscale structures with high resolution. Roller nanoimprint lithography (R-NIL) is the most common NIL technique benefiting large-scale, continuous, and efficient industrial production.
View Article and Find Full Text PDFAn efficient synthesis of a variety of 3-alkyl quinoxalinones via C-H direct alkylation by photoredox catalysis between quinoxalinones and alkylborates is reported. A range of quinoxalinones was tolerated well. This visible-light photocatalysis reaction allows access to structurally diverse 3-alkyl quinoxalinones in good to excellent yields.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is one of the tightest physical barriers to prevent pathogens from invading the central nervous system (CNS). However, the mechanism by which Zika virus (ZIKV) crossing the BBB remains unresolved. We found ZIKV induced high morbidity and mortality in newborn mice, accompanied by inflammatory injury on CNS.
View Article and Find Full Text PDFA strong root system facilitates the absorption of water and nutrients from the soil, to improve the growth of crops. However, to date, there are still very few root development regulatory genes that can be used in crop breeding for agriculture. In this study, we cloned a negative regulator gene of root development, Robust Root System 1 (RRS1), which encodes an R2R3-type MYB family transcription factor.
View Article and Find Full Text PDFA photocatalyzed cascade double C-C formation via sp C-H bond activation of diarylamines with hypervalent iodine diazo reagents was developed. A variety of diarylamines and hypervalent iodine(III) reagents were tolerated well, and a range of substituted acridines with yields ranging from moderate to excellent was provided efficiently. The protocol introduces diazo groups onto diarylamines and enables subsequent late-stage assembly point functionalization with the diazonium structure, forming two new C-C bonds in a sequential fashion.
View Article and Find Full Text PDFThe solutal Marangoni effect is attracting increasing interest because of its fundamental role in many isothermal directional transport processes in fluids, including the Marangoni-driven spreading on liquid surfaces or Marangoni convection within a liquid. Here we report a type of continuous Marangoni transport process resulting from Marangoni-driven spreading and Marangoni convection in an aqueous two-phase system. The interaction between a salt (CaCl) and an anionic surfactant (sodium dodecylbenzenesulfonate) generates surface tension gradients, which drive the transport process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Wound healing involves multiple stages of body responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. New material design satisfying all demands throughout different stages of wound healing is cherished but rarely discussed. Here we introduce all-aqueous multiphase microfluidics as a novel strategy to fabricate self-assembled, multifunctional alkylated chitosan/alginate microcapsules (SAAMs) as novel therapeutic materials for rapid blood coagulation and wound healing.
View Article and Find Full Text PDF