Publications by authors named "Yaelle Bavli"

Nano-mupirocin is a PEGylated nano-liposomal formulation of the antibiotic mupirocin, undergoing evaluation for treating infectious diseases and intratumor bacteria. Intratumoral microbiota play an important role in the regulation of tumor progression and therapeutic efficacy. However, antibiotic use to target intratumoral bacteria should be performed in a way that will not affect the gut microbiota, found to enable the efficacy of cancer treatments.

View Article and Find Full Text PDF

The early and massive vaccination campaign in Israel with the mRNA-LNP Comirnaty® (Pfizer-BioNTech) vaccine against the SARS-CoV-2 virus made available large amounts of data regarding the efficacy and safety of this vaccine. Adverse reactions to mRNA-based SARS-CoV-2 vaccines are rare events, but due to large mediatic coverage they became feared and acted as a potential source of delay for the vaccination of the Israeli population. The experience with the reactogenicity of the polyethylene glycol (PEG) moiety of PEGylated liposomes, PEGylated proteins and other PEGylated drugs raised the fear that similar adverse effects can be associated with the PEG lipid which is an essential component of currently used mRNA-LNP vaccines against COVID-19.

View Article and Find Full Text PDF

Antibiotic resistance is a global health threat. There are a few antibiotics under development, and even fewer with new modes of action and no cross-resistance to established antibiotics. Accordingly, reformulation of old antibiotics to overcome resistance is attractive.

View Article and Find Full Text PDF

We previously reported the development of a novel formulation of an ultra-long-acting local anesthetic based on bupivacaine encapsulated in large multivesicular liposomes (Bupisomes) embedded in hydrogel. This formulation (Bupigel) prolonged bupivacaine release from the formulation in dissolution-like studies in vitro and analgesia in vivo in mouse, rat, and pig models. In this study we assessed Bupigel neurotoxicity on rabbit sciatic nerve using histopathology and electrophysiologic testing.

View Article and Find Full Text PDF

PEGylated nanomedicines are known to induce infusion reactions (IRs) that in some cases can be life-threatening. Herein, we report a case study in which a patient with rare mediastinal and intracardiac IgG4-related sclerosing disease received 8 treatments of intravenously administered PEGylated liposomal methylprednisolone-succinate (NSSL-MPS). Due to the ethical requirements to reduce IRs, the patient received a cocktail of premedication including low dose of steroids, acetaminophen and H2 blockers before each infusion.

View Article and Find Full Text PDF

Polyethylene glycol (PEG)-coated nanopharmaceuticals can cause mild to severe hypersensitivity reactions (HSRs), which can occasionally be life threatening or even lethal. The phenomenon represents an unsolved immune barrier to the use of these drugs, yet its mechanism is poorly understood. This study showed that a single i.

View Article and Find Full Text PDF

The increasing use in the last decade of PEGylated nanodrugs such as Doxil® has seen a rise in the number of associated occurrences of hypersensitivity reactions (HSRs). These reactions (also called infusion reactions or IR), can range from harmless symptoms to life-threatening reactions. Current means to prevent IR include the prophylactic use of antihistamines and steroids, but they cannot ensure total prevention.

View Article and Find Full Text PDF

Glucocorticosteroids are the most efficacious anti-inflammatory agents and the gold standard treatment in Duchenne muscular dystrophy (DMD). However, their chronic use may lead to severe side effects. We evaluated the use of a novel injectable steroidal nano-drug in mdx mouse model of DMD by comparing the efficacy of nano-liposomes remotely loaded with the steroid prodrug, methylprednisolone hemisuccinate (MPS) with the same steroid as-is, in short (4-weeks) and long-term (58-weeks) treatments.

View Article and Find Full Text PDF

The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs' unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage).

View Article and Find Full Text PDF